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That is just the first part of the talk..

Second part of the talk:

A new branch and bound for finite Nash games with switching costs

Joint work with G. Liuzzi, M. Locatelli and Stefan Rass (System Security Group Universitat

Klagenfurt )
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The problem we consider is

min 1

2
xTQx+ cTx

x ∈ ∆n = {x ∈ R
n
+ :

∑n

i=1
xi = 1},

(1)

where a quadratic function is minimized over the n-dimensional unit simplex
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The problem we consider is

min 1

2
xTQx+ cTx

x ∈ ∆n = {x ∈ R
n
+ :

∑n

i=1
xi = 1},

(1)

where a quadratic function is minimized over the n-dimensional unit simplex

Applications:

1. quadratic resource allocation problem

2. mean/variance portfolio selection problem

3. maximum clique

4. lower bound for the crossing number of complete bipartite graph Km,n
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The problem is polinomially solvable when
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The problem is polinomially solvable when

1. either Q � 0 since the problem is convex

2. or when the structure of Q is such that the optimum is attained at one of the n vertices

of the simplex (i.e. Q � 0 or Qii = 0, Q ≥ 0)
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The problem is polinomially solvable when

1. either Q � 0 since the problem is convex

2. or when the structure of Q is such that the optimum is attained at one of the n vertices

of the simplex (i.e. Q � 0 or Qii = 0, Q ≥ 0)

Otherwise it is NP-hard.
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We propose a branch and bound approach that tries to implicitely enumerate all the KKT

points of the problem. The algorithm exploits the following ideas:

1. an LP based bound based on the decomposition of the quadratic function into a sum

of quadratic functions for which it is possible to compute the convex envelope over the

unit simplex

2. a smart branching strategy

3. an improvement of the bound based on the KKT conditions
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We denote by P0 problem (1), i.e., the root node of the branch-and-bound tree, and L0 its

lower bound, by z the global UB.

Π = {(P0, L0)}, z = +∞
While Π 6= ∅

(P,L)← select(Π)
Π← Π \ {(P, L)}
(C, z)← branch&bound(P )
update(Π, C)

End

Return the global upper bound z
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lower bound, by z the global UB.

Π = {(P0, L0)}, z = +∞
While Π 6= ∅

(P,L)← select(Π)
Π← Π \ {(P, L)}
(C, z)← branch&bound(P )
update(Π, C)

End

Return the global upper bound z

- the select procedure picks an open problem according to the selection strategy;
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We denote by P0 problem (1), i.e., the root node of the branch-and-bound tree, and L0 its

lower bound, by z the global UB.

Π = {(P0, L0)}, z = +∞
While Π 6= ∅

(P,L)← select(Π)
Π← Π \ {(P, L)}
(C, z)← branch&bound(P )
update(Π, C)

End

Return the global upper bound z

- the select procedure picks an open problem according to the selection strategy;

- the branch&bound , given an open problem P generates a set of children (branching

strategy) and it computes the lower and upper bounds of the children, and possibly

updates z;



B&B

• Actually...

Introduction

Branch and Bound

• B&B

Our bound

Bounding Strategy

Branching strategy

Numerical Results

Mixed Strategies Costs

The Algorithm

Results

6 / 34

We denote by P0 problem (1), i.e., the root node of the branch-and-bound tree, and L0 its

lower bound, by z the global UB.

Π = {(P0, L0)}, z = +∞
While Π 6= ∅

(P,L)← select(Π)
Π← Π \ {(P, L)}
(C, z)← branch&bound(P )
update(Π, C)

End

Return the global upper bound z

- the select procedure picks an open problem according to the selection strategy;

- the branch&bound , given an open problem P generates a set of children (branching

strategy) and it computes the lower and upper bounds of the children, and possibly

updates z;

- the update procedure updates the set of currently open problems Π. Namely, it adds

to Π the new problems in C and it (possibly) fathoms from Π those problems with a

lower bound greater than or equal to the global upper bound.
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Observation 1 For any StQP problem (1):

(i) matrix Q and vector c can always be re-defined in such a way that Qii = 0 for all

i = 1, . . . , n, i.e., all diagonal elements of the Hessian matrix Q can be taken equal to

0;

(ii) if the diagonal condition above holds, then all Qij > 0 can be set equal to 0, since at

any optimal solution of the StQP problem, Qij > 0 implies that at least one among xi

and xj is certainly equal to 0.

Indeed the objective can be rewritten as
∑

i,j

Qijxixj+
∑

i

cixi+
∑

i

Qiixi−
∑

i

Qiixi(
∑

j

xj) =
∑

i,j

(Qij−Qii)xixj+
∑

i

(Qii+ci)xi

and it can be easily shown that if there exists a pair i, j such that Qij > 0 then either

xi = 0 or xj = 0 in the optimal solution (by contradiction).
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A graph G = (V,E), called convexity graph, can be associated to problem (1) [Scozzari

Tardella 08], where

V = {1, . . . , n}, E = {(i, j) : i, j ∈ {1, . . . , n}, Qij < 0}.

Observation 2 The optimal solution of (1) must be attained in the relative interior of a

face

FC = {x ∈ ∆n : xi = 0, i 6∈ C}, (2)

where C ⊆ V is a clique over the convexity graph G. This implies that, given any

independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is strictly positive

at the optimal solution of (1).
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Consider the quadratic function:

f
i(x) =

∑

j 6=i

Aijxixj ,

whose convexity graph is a star with center the node corresponding to variable xi
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Consider the quadratic function:
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i(x) =

∑
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Aijxixj ,

whose convexity graph is a star with center the node corresponding to variable xi

The convex envelope of f i
over the unit simplex can be computed analitically



Convex envelope

• Actually...

Introduction

Branch and Bound

Our bound

• Observations

• Convexity graph

• Convex envelope

Bounding Strategy

Branching strategy

Numerical Results

Mixed Strategies Costs

The Algorithm

Results

9 / 34

Consider the quadratic function:

f
i(x) =

∑

j 6=i

Aijxixj ,

whose convexity graph is a star with center the node corresponding to variable xi

The convex envelope of f i
over the unit simplex can be computed analitically

Starting from this convex envelope a weaker LP bound can be defined that is significantly

cheaper without losing too much in quality :

ℓLP(Q, c) = min

n
∑

i=1

yi + c
T
x

x ∈ ∆n

yi ≥ γi
r(x) i = 1, . . . , n, r = 1, . . . , ti + 1.

(3)

where γi
r is a supporting hyperplane of the convex envelope of f i
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The KKT conditions for problem (1) are

Qix+ ci − λ = µi i = 1, . . . , n

µi ≥ 0 i = 1, . . . , n,

where Qi is the i-th row of matrix Q, λ is the Lagrange multiplier of the constraint
∑n

i=1
xi = 1,

and µi, i = 1, . . . , n, is the Lagrange multiplier of the constraint xi ≥ 0.

Observation 3 Let (x, λ,µ) be a KKT point of (1). If xi > 0, then for each j 6= i

Qjx+ cj ≥ Qix+ ci. (4)

Moreover
1

2
x
TQx+ cTx ≥

1

2

[

Qix+ ci + cTx

]

. (5)
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At each node of the B&B tree, we associate a vector s ∈ {−1, 0, 1}n of variable statuses.

Specifically,

si =







−1 implies xi ≥ 0
0 implies xi = 0
1 implies xi > 0.

We compute a lower bound at a given node by solving an LP problem where we add the

constraints deriving from the corresponding node status s. More specifically,
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si =







−1 implies xi ≥ 0
0 implies xi = 0
1 implies xi > 0.

We compute a lower bound at a given node by solving an LP problem where we add the

constraints deriving from the corresponding node status s. More specifically,

i) for every i such that si = 0, the xi variable is fixed to 0;
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At each node of the B&B tree, we associate a vector s ∈ {−1, 0, 1}n of variable statuses.

Specifically,

si =







−1 implies xi ≥ 0
0 implies xi = 0
1 implies xi > 0.

We compute a lower bound at a given node by solving an LP problem where we add the

constraints deriving from the corresponding node status s. More specifically,

i) for every i such that si = 0, the xi variable is fixed to 0;

ii) for every i such that si = 1, the constraints (4) are added; furthermore, exploiting the

bound on the objective function (5) the following constraint is added

n
∑

j=1

yj ≥
1

2

[

Qix+ ci + c
T
x

]

;

finally, for every j 6= i such that Qij = 0 and sj = −1, variable xj is fixed to 0;

should sj be equal to 1, the node can be fathomed since no optimal solution of Problem

(1) can have both xi and xj greater than zero when Qij = 0 (see Observation 1).
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At each node of the B&B tree, we associate a vector s ∈ {−1, 0, 1}n of variable statuses.

Specifically,

si =







−1 implies xi ≥ 0
0 implies xi = 0
1 implies xi > 0.

We compute a lower bound at a given node by solving an LP problem where we add the

constraints deriving from the corresponding node status s. More specifically,

i) for every i such that si = 0, the xi variable is fixed to 0;

ii) for every i such that si = 1, the constraints (4) are added; furthermore, exploiting the

bound on the objective function (5) the following constraint is added

n
∑

j=1

yj ≥
1

2

[

Qix+ ci + c
T
x

]

;

finally, for every j 6= i such that Qij = 0 and sj = −1, variable xj is fixed to 0;

should sj be equal to 1, the node can be fathomed since no optimal solution of Problem

(1) can have both xi and xj greater than zero when Qij = 0 (see Observation 1).

Note that whenever the matrix Q is sparse, fixing si = 1 implies fixing many other

variables to zero, due to the high number of zero elements on row i, so that the size of the

LP problem reduces substantially.
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Given a generic node of the B&B tree, the branching procedure exploits Observation 2:

given any independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is

strictly positive at the optimal solution of (1).
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Given a generic node of the B&B tree, the branching procedure exploits Observation 2:

given any independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is

strictly positive at the optimal solution of (1).

We exploit this observation by defining a (possibly) non-binary branching procedure. In

particular, given an independent set I in G, we generate |I|+ 1 children with statuses

such that:
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Given a generic node of the B&B tree, the branching procedure exploits Observation 2:

given any independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is

strictly positive at the optimal solution of (1).

We exploit this observation by defining a (possibly) non-binary branching procedure. In

particular, given an independent set I in G, we generate |I|+ 1 children with statuses

such that:

- for every k ∈ I , a child is generated with sk = 1 and si = 0 for all i ∈ I , i 6= k;
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Given a generic node of the B&B tree, the branching procedure exploits Observation 2:

given any independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is

strictly positive at the optimal solution of (1).

We exploit this observation by defining a (possibly) non-binary branching procedure. In

particular, given an independent set I in G, we generate |I|+ 1 children with statuses

such that:

- for every k ∈ I , a child is generated with sk = 1 and si = 0 for all i ∈ I , i 6= k;

- a further child is generated with sk = 0, for all k ∈ I .
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Given a generic node of the B&B tree, the branching procedure exploits Observation 2:

given any independent set I ⊆ V in the convexity graph G, at most one xi, i ∈ I , is

strictly positive at the optimal solution of (1).

We exploit this observation by defining a (possibly) non-binary branching procedure. In

particular, given an independent set I in G, we generate |I|+ 1 children with statuses

such that:

- for every k ∈ I , a child is generated with sk = 1 and si = 0 for all i ∈ I , i 6= k;

- a further child is generated with sk = 0, for all k ∈ I .

Note that this branching strategy implies that, if the matrix is sparse, the computation of the

first |T | bounds should be fast, since fixing si = 1 implies fixing many other variables to

zero, due to the high number of zero elements on row i, so that the size of the LP problem

reduces substantially.
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Let V̄ ⊆ V be the subset of nodes of graph G associated with variables whose statuses

are equal to -1 at the current node, and G[V̄ ] the subgraph of G induced by the set V̄ .

Moreover, let (x̄, ȳ) be the optimal solution of the relaxation at the current node.
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Let V̄ ⊆ V be the subset of nodes of graph G associated with variables whose statuses

are equal to -1 at the current node, and G[V̄ ] the subgraph of G induced by the set V̄ .

Moreover, let (x̄, ȳ) be the optimal solution of the relaxation at the current node.

For every node i ∈ V̄ , let

ηi = ȳi − x̄
⊤
qix̄i ≤ 0, for each i ∈ V̄ ,

and π be the permutation corresponding to the ascending ordering of ηi’s.



Independent Set

• Actually...

Introduction

Branch and Bound

Our bound

Bounding Strategy

Branching strategy

• Branching

• Independent Set

• Independent Set

Numerical Results

Mixed Strategies Costs

The Algorithm

Results

13 / 34

Let V̄ ⊆ V be the subset of nodes of graph G associated with variables whose statuses

are equal to -1 at the current node, and G[V̄ ] the subgraph of G induced by the set V̄ .

Moreover, let (x̄, ȳ) be the optimal solution of the relaxation at the current node.

For every node i ∈ V̄ , let

ηi = ȳi − x̄
⊤
qix̄i ≤ 0, for each i ∈ V̄ ,

and π be the permutation corresponding to the ascending ordering of ηi’s.

We recall that the value ηi represents an estimate of the quality of the polyhedral bound on

the star graph induced by node i ∈ V̄ . Hence, the lower this value, the more promising the

node is to improve the bound.
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We compute an independent set I on G[V̄ ] by using a greedy algorithm proposed in

[Blelloch et al. ’12] using as ordering of the nodes in V̄ the above defined π.
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We compute an independent set I on G[V̄ ] by using a greedy algorithm proposed in

[Blelloch et al. ’12] using as ordering of the nodes in V̄ the above defined π.

We further process the independent set I by defining the following subset of nodes T ⊂ I ,

T =
{

i ∈ I : |ηi| ≥ 1.5 η̄I
}

, with η̄I =
1

|I|

∑

i∈I

|ηi|.

This amounts to choosing only the more promising nodes, i.e., those having a gap ηi
sufficiently away from zero. By using set T , we generate |T |+ 1 children as described

above.



Setting

• Actually...

Introduction

Branch and Bound

Our bound

Bounding Strategy

Branching strategy

Numerical Results

• Setting

• Random Instances

• Results on random

Instances

• Comparison with

[Scozzari Tardella 08]

• Comparison with

[Bundfuss Duer 09]

• Hard instances

Mixed Strategies Costs

The Algorithm

Results

15 / 34

We implemented our branch and bound algorithm using Julia v0.4.5 and ran our

experiments on a 2.7 GHz Intel I5 PC, with 32GB of RAM.

http://www.iasi.cnr.it/~liuzzi/StQP
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We implemented our branch and bound algorithm using Julia v0.4.5 and ran our

experiments on a 2.7 GHz Intel I5 PC, with 32GB of RAM.

GUROBI and Ipopt have been compiled with version 5.3.1 of the GCC library.

http://www.iasi.cnr.it/~liuzzi/StQP


Setting

• Actually...

Introduction

Branch and Bound

Our bound

Bounding Strategy

Branching strategy

Numerical Results

• Setting

• Random Instances

• Results on random

Instances

• Comparison with

[Scozzari Tardella 08]

• Comparison with

[Bundfuss Duer 09]

• Hard instances

Mixed Strategies Costs

The Algorithm

Results

15 / 34

We implemented our branch and bound algorithm using Julia v0.4.5 and ran our

experiments on a 2.7 GHz Intel I5 PC, with 32GB of RAM.

GUROBI and Ipopt have been compiled with version 5.3.1 of the GCC library.

Both the code and the instances on which it has been tested are freely available for

download at the URL http://www.iasi.cnr.it/~liuzzi/StQP.

http://www.iasi.cnr.it/~liuzzi/StQP
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We implemented our branch and bound algorithm using Julia v0.4.5 and ran our

experiments on a 2.7 GHz Intel I5 PC, with 32GB of RAM.

GUROBI and Ipopt have been compiled with version 5.3.1 of the GCC library.

Both the code and the instances on which it has been tested are freely available for

download at the URL http://www.iasi.cnr.it/~liuzzi/StQP.

We compare with two approaches:

- [Scozzari Tardella 08] cheap O(n2) lower bounds are employed and an implicit

enumeration is carried on over the set of cliques of the so called convexity graph of (1),

- [Bundfuss Duer 09], that is an adaptive linear approximation algorithm for copositive

programs applied to the copositive formulation of StQP problems.

http://www.iasi.cnr.it/~liuzzi/StQP
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We employed the algorithm described in [Nowak 99] to randomly generate the test

instances, used also in [Scozzari Tardella 08].
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We employed the algorithm described in [Nowak 99] to randomly generate the test

instances, used also in [Scozzari Tardella 08].

In these instances it is possible to set a parameter, the density d ∈ [0, 1] of the underlying

convexity graph, through which the difficulty of the StQP problem can be varied. Namely,

as d increases the problems become more difficult.
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We employed the algorithm described in [Nowak 99] to randomly generate the test

instances, used also in [Scozzari Tardella 08].

In these instances it is possible to set a parameter, the density d ∈ [0, 1] of the underlying

convexity graph, through which the difficulty of the StQP problem can be varied. Namely,

as d increases the problems become more difficult.

For each couple (number of variables, density), we generated five random instances beside

the one provided to us by Prof. A. Scozzari and also employed in [Scozzari Tardella 08].
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We employed the algorithm described in [Nowak 99] to randomly generate the test

instances, used also in [Scozzari Tardella 08].

In these instances it is possible to set a parameter, the density d ∈ [0, 1] of the underlying

convexity graph, through which the difficulty of the StQP problem can be varied. Namely,

as d increases the problems become more difficult.

For each couple (number of variables, density), we generated five random instances beside

the one provided to us by Prof. A. Scozzari and also employed in [Scozzari Tardella 08].

We were able to solve efficiently problems of size n ∈ {100, 200, 500} with

d ∈ {0.25, 0.5, 0.75}, and the best strategy was the one with N-ary branching and best

bound visiting strategy
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Figure 1: Percentage of LP problems solved within time t on a problem with n = 200 and

d = 0.25

We report the solution time on the x-axis and the number of problems solved within that

time for each strategy on the y-axis. As expected, the n-ary branching allows to solve more

problems where the variables are fixed to be positive, resulting in faster LPs since many

variables are then fixed to zero
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n 0.25 0.5 0.75

NBB [ST 08] NBB [ST 08] NBB [ST 08]

100 1.61 1.00 6.40 29.05 36.72 1021.03

200 6.40 8.47 66.79 502.71 1573.05 -

We report the computing times for NBB and for the approach proposed in [Scozzari

Tardella 08], normalized by the time required by the latter to solve the problem with

n = 100 and density 0.25 (which is, thus, equal to 1).
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n 0.25 0.5 0.75

NBB [ST 08] NBB [ST 08] NBB [ST 08]

100 1.61 1.00 6.40 29.05 36.72 1021.03

200 6.40 8.47 66.79 502.71 1573.05 -

We report the computing times for NBB and for the approach proposed in [Scozzari

Tardella 08], normalized by the time required by the latter to solve the problem with

n = 100 and density 0.25 (which is, thus, equal to 1).

The important observation that one can draw from these results is that, both at n = 100
and at n = 200, the increase of the computing times with the density of the underlying

convexity graph is much slower for NBB so that that the proposed approach scales better

than the approach in [Scozzari Tardella 08], as the density increases.
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n 0.25 0.5 0.75

NBB [ST 08] NBB [ST 08] NBB [ST 08]

100 1.61 1.00 6.40 29.05 36.72 1021.03

200 6.40 8.47 66.79 502.71 1573.05 -

We report the computing times for NBB and for the approach proposed in [Scozzari

Tardella 08], normalized by the time required by the latter to solve the problem with

n = 100 and density 0.25 (which is, thus, equal to 1).

The important observation that one can draw from these results is that, both at n = 100
and at n = 200, the increase of the computing times with the density of the underlying

convexity graph is much slower for NBB so that that the proposed approach scales better

than the approach in [Scozzari Tardella 08], as the density increases.

Furthermore, we were able to solve exactly also instances they could only tackle with an

heuristic approacH (n = 500)
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In [Bundfuss Duer 09] they report results on random instances where the entries of matrix

Q are uniformly random generated in the interval [−n, n]. For these instances excellent

results are reported for dimension n up to 10,000.
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In [Bundfuss Duer 09] they report results on random instances where the entries of matrix

Q are uniformly random generated in the interval [−n, n]. For these instances excellent

results are reported for dimension n up to 10,000.

However, it turns out that these instances tend to be very simple, since , it turns out that for

each arbitrary relative precision ε > 0, the vertex of the unit simplex with the lowest

objective function value can be certified as an ε-optimal solution (by the trivial lower bound

obtained by taking the minimum of all the entries of the matrix Q) with probability one as

n→∞.
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In [Bundfuss Duer 09] they report results on random instances where the entries of matrix

Q are uniformly random generated in the interval [−n, n]. For these instances excellent

results are reported for dimension n up to 10,000.

However, it turns out that these instances tend to be very simple, since , it turns out that for

each arbitrary relative precision ε > 0, the vertex of the unit simplex with the lowest

objective function value can be certified as an ε-optimal solution (by the trivial lower bound

obtained by taking the minimum of all the entries of the matrix Q) with probability one as

n→∞.

We ran the algorithm proposed in [Bundfuss Duer 09] on our instances with time limit 3000

seconds:

n(density) (ub − lb)/|ub| iterations cpu time

100(0.25) avg. 0.0000 720.5 185.14

100(0.5) avg. 0.0439 1647.833333 3002.64

100(0.75) avg. 0.1373 1692.833333 3004.80

200(0.25) avg. 0.1063 1496.5 3003.39

200(0.5) avg. 0.2158 1502.167 3002.66
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In [Bundfuss Duer 09] they report results on random instances where the entries of matrix

Q are uniformly random generated in the interval [−n, n]. For these instances excellent

results are reported for dimension n up to 10,000.

However, it turns out that these instances tend to be very simple, since , it turns out that for

each arbitrary relative precision ε > 0, the vertex of the unit simplex with the lowest

objective function value can be certified as an ε-optimal solution (by the trivial lower bound

obtained by taking the minimum of all the entries of the matrix Q) with probability one as

n→∞.

We ran the algorithm proposed in [Bundfuss Duer 09] on our instances with time limit 3000

seconds:

n(density) (ub − lb)/|ub| iterations cpu time

100(0.25) avg. 0.0000 720.5 185.14

100(0.5) avg. 0.0439 1647.833333 3002.64

100(0.75) avg. 0.1373 1692.833333 3004.80

200(0.25) avg. 0.1063 1496.5 3003.39

200(0.5) avg. 0.2158 1502.167 3002.66

We solved the instance johnson8-2-4 in 14 seconds (and after the generation of 1,185

nodes) with respect to a computing time of 93 seconds reported in [Bundfuss Duer 09],

while we solved the instance hamming6-4 in 39 seconds (and 2,961 nodes) with respect

to a computing time of almost 1 hour reported in [Bundfuss Duer 09].
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As a final experiment with our approach, we tested it over the instances recently proposed

in [Bomze et al 2018].
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As a final experiment with our approach, we tested it over the instances recently proposed

in [Bomze et al 2018].

They are built in such a way that the number of local minimizers grows exponentially with

n and the difference between the function values of these local minimizers is very small.
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As a final experiment with our approach, we tested it over the instances recently proposed

in [Bomze et al 2018].

They are built in such a way that the number of local minimizers grows exponentially with

n and the difference between the function values of these local minimizers is very small.

The density of their underlying convexity graph is d = 1. Such instances are obviously the

worst possible ones for any method based on implicit enumeration, since the effect of

pruning is very mild and almost a complete enumeration is needed.
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As a final experiment with our approach, we tested it over the instances recently proposed

in [Bomze et al 2018].

They are built in such a way that the number of local minimizers grows exponentially with

n and the difference between the function values of these local minimizers is very small.

The density of their underlying convexity graph is d = 1. Such instances are obviously the

worst possible ones for any method based on implicit enumeration, since the effect of

pruning is very mild and almost a complete enumeration is needed.

Matrix BBB BDF

M24a 357783 6541.37 372839 6272.39

M24b 324509 5783.32 333647 4493.06

M24c 308013 5355.19 302773 4058.09

Table 1: Results on the matrices proposed in [Bomze et al 18] with n = 24
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We are in the context of repeated games for security
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We are in the context of repeated games for security

Playing a repeated game usually assumes that strategies can be changed without effort or

costs between instances of the same game.
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We are in the context of repeated games for security

Playing a repeated game usually assumes that strategies can be changed without effort or

costs between instances of the same game.

Suppose a game has an equilibrium in pure strategies. Then both players can

straightforwardly implement their individually optimal action and the cost can be

meaningfully subtracted from the revenue
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We are in the context of repeated games for security

Playing a repeated game usually assumes that strategies can be changed without effort or

costs between instances of the same game.

Suppose a game has an equilibrium in pure strategies. Then both players can

straightforwardly implement their individually optimal action and the cost can be

meaningfully subtracted from the revenue

However, what happens if the game has all its equilibria in mixed strategies? In that case,

a player is forced to change its behavior over repetitions of the game, where the switch

from one pure strategy played in the last round to the new (randomly chosen) strategy in

the next round of the game is tied to some cost.



An example

• Actually...

Introduction

Branch and Bound

Our bound

Bounding Strategy

Branching strategy

Numerical Results

Mixed Strategies Costs

• Security Games

• An example

• Formulation of the

problem

• How difficult is the

problem?

The Algorithm

Results

22 / 34

Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1

An equilibrium exists only in a mixed strategies (all the rooms need to be checked and

more than once)
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1

An equilibrium exists only in a mixed strategies (all the rooms need to be checked and

more than once)

The guard would surely prefer checking nearby rooms at. once and leaving far away rooms

for later
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1

An equilibrium exists only in a mixed strategies (all the rooms need to be checked and

more than once)

The guard would surely prefer checking nearby rooms at. once and leaving far away rooms

for later

However, rooms may have different importance levels for the attacker (e.g., induced by

different security clearances in the enterprise).
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1

An equilibrium exists only in a mixed strategies (all the rooms need to be checked and

more than once)

The guard would surely prefer checking nearby rooms at. once and leaving far away rooms

for later

However, rooms may have different importance levels for the attacker (e.g., induced by

different security clearances in the enterprise).

A shortest round trip route may not be optimal, since the security guard has to visit all the

rooms with prescribed frequencies.
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Consider an enterprise building with rooms R1, . . . , Rn to be visited by a security guard

(player 1) repeatedly at random.

The visit to the i-th room corresponds to the i-th pure strategy in the action set of player 1

An equilibrium exists only in a mixed strategies (all the rooms need to be checked and

more than once)

The guard would surely prefer checking nearby rooms at. once and leaving far away rooms

for later

However, rooms may have different importance levels for the attacker (e.g., induced by

different security clearances in the enterprise).

A shortest round trip route may not be optimal, since the security guard has to visit all the

rooms with prescribed frequencies.

The game is repeated but the cost of playing strategy visit room Ri depends on which

room has been checked just before. Thus, playing a mixed strategy equilibrium induces

costs not when the strategy is played but mostly when the strategy is changed.
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Assume that player 1 has n strategies whereas player 2 has m strategies. Let Sij be the

random (according to a certain distribution FSij
(x)) cost for player 1 for switching from

strategy i to strategy j
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Assume that player 1 has n strategies whereas player 2 has m strategies. Let Sij be the

random (according to a certain distribution FSij
(x)) cost for player 1 for switching from

strategy i to strategy j

Thanks to the low of total probability, the vector of switching cost for all strategies can be

written as Sx, so that the switching cost in mixed strategies is given by xTSx.
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Assume that player 1 has n strategies whereas player 2 has m strategies. Let Sij be the

random (according to a certain distribution FSij
(x)) cost for player 1 for switching from

strategy i to strategy j

Thanks to the low of total probability, the vector of switching cost for all strategies can be

written as Sx, so that the switching cost in mixed strategies is given by xTSx.

Assuming that the player 1 gives priority α ∈ (0, 1) to his payoff u1(x, y) = xTAy, and

priority 1− α to the switching costs, so that his problem is

min v

v ≥ αxTSx+ (1− α)xTAei, i = 1, . . . ,m
eTx = 1
x ≥ 0

(6)
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The problem we want to solve is

min αxTSx+ v

v ≥ (1− α)xTAei, i = 1, . . . ,m
eTx = 1
x ≥ 0

(7)

where Sii = 0 for i = 1, . . . , n and Sij ≥ 0 for i, j = 1, . . . , n, i < j (the matrix is

indefinite) and A ≥ 0
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The problem we want to solve is

min αxTSx+ v

v ≥ (1− α)xTAei, i = 1, . . . ,m
eTx = 1
x ≥ 0

(7)

where Sii = 0 for i = 1, . . . , n and Sij ≥ 0 for i, j = 1, . . . , n, i < j (the matrix is

indefinite) and A ≥ 0

α = 0 We have a linear problem (easy)
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The problem we want to solve is

min αxTSx+ v

v ≥ (1− α)xTAei, i = 1, . . . ,m
eTx = 1
x ≥ 0

(7)

where Sii = 0 for i = 1, . . . , n and Sij ≥ 0 for i, j = 1, . . . , n, i < j (the matrix is

indefinite) and A ≥ 0

α = 0 We have a linear problem (easy)

α = 1 We have a pure StQP whose solution is any vertex of the simplex where the cost

is 0.
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The problem we want to solve is

min αxTSx+ v

v ≥ (1− α)xTAei, i = 1, . . . ,m
eTx = 1
x ≥ 0

(7)

where Sii = 0 for i = 1, . . . , n and Sij ≥ 0 for i, j = 1, . . . , n, i < j (the matrix is

indefinite) and A ≥ 0

α = 0 We have a linear problem (easy)

α = 1 We have a pure StQP whose solution is any vertex of the simplex where the cost

is 0.

α ∈ (0,1) It can be proved that the problem is NP-complete since it is equivalent to the

max clique decision problem.
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The objective of the problem is composed by a quadratic term and a linear term
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The objective of the problem is composed by a quadratic term and a linear term

We cannot use anymore the bound based on the convex envelope since the convex

envelope of xTSx is the trivial zero bound
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The objective of the problem is composed by a quadratic term and a linear term

We cannot use anymore the bound based on the convex envelope since the convex

envelope of xTSx is the trivial zero bound

We cannot use the KKT conditions as we did before
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The objective of the problem is composed by a quadratic term and a linear term

We cannot use anymore the bound based on the convex envelope since the convex

envelope of xTSx is the trivial zero bound

We cannot use the KKT conditions as we did before

In this case the convexity graph is dense, so we cannot fix many x to zero
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The objective of the problem is composed by a quadratic term and a linear term

We cannot use anymore the bound based on the convex envelope since the convex

envelope of xTSx is the trivial zero bound

We cannot use the KKT conditions as we did before

In this case the convexity graph is dense, so we cannot fix many x to zero

We can bound the linear part by using the actual Global Upper Bound
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The objective of the problem is composed by a quadratic term and a linear term

We cannot use anymore the bound based on the convex envelope since the convex

envelope of xTSx is the trivial zero bound

We cannot use the KKT conditions as we did before

In this case the convexity graph is dense, so we cannot fix many x to zero

We can bound the linear part by using the actual Global Upper Bound

We bound the quadratic part by using Mc Cormick inequalities
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To find a lower bound we solve the following problem:

(LPB)

min t

s.t. t ≥ v +
n
∑

i=1

fi

v ≥ x
T
Aei i = 1, . . . ,m

t ≤ GUB

v +
n
∑

i=1

fi ≤ GUB

fi ≥ 0.5



min[li]xi + min[i]
n

∑

j=1

Sijxj − min[li]min[i]



 i = 1, . . . , n

fi ≥ 0.5



max[li]xi + max[i]
n
∑

j=1

Sijxj − max[li]max[i]



 i = 1, . . . , n

eT x = 1
x ≥ 0
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To find a lower bound we solve the following problem:

(LPB)

min t

s.t. t ≥ v +
n
∑

i=1

fi

v ≥ x
T
Aei i = 1, . . . ,m

t ≤ GUB

v +
n
∑

i=1

fi ≤ GUB

fi ≥ 0.5



min[li]xi + min[i]
n

∑

j=1

Sijxj − min[li]min[i]



 i = 1, . . . , n

fi ≥ 0.5



max[li]xi + max[i]
n
∑

j=1

Sijxj − max[li]max[i]



 i = 1, . . . , n

eT x = 1
x ≥ 0

1. min[li] (max[li]) is the minimum (maximum) value at the node of

li(x) =
∑n

j=1
Sijxj . At the root node is initialized at 0 (maxj{Sij}).
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To find a lower bound we solve the following problem:

(LPB)

min t

s.t. t ≥ v +
n
∑

i=1

fi

v ≥ x
T
Aei i = 1, . . . ,m

t ≤ GUB

v +
n
∑

i=1

fi ≤ GUB

fi ≥ 0.5



min[li]xi + min[i]
n

∑

j=1

Sijxj − min[li]min[i]



 i = 1, . . . , n

fi ≥ 0.5



max[li]xi + max[i]
n
∑

j=1

Sijxj − max[li]max[i]



 i = 1, . . . , n

eT x = 1
x ≥ 0

1. min[li] (max[li]) is the minimum (maximum) value at the node of

li(x) =
∑n

j=1
Sijxj . At the root node is initialized at 0 (maxj{Sij}).

2. min[i] (max[i]) is the minimum (maximum) value at the node of xi. It is initialized at

0 (1).
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while there is improvement

1. Compute min[li], max[li], max[i] by solving LPs (for all i or for an interesting

subsets)

2. Solve problem (LPB)

end



Bounding Procedure

• Actually...

Introduction

Branch and Bound

Our bound

Bounding Strategy

Branching strategy

Numerical Results

Mixed Strategies Costs

The Algorithm

• Bounding Strategy

• Lower Bound

• Bounding Procedure

• Branching Strategy

• Root Node

Results

27 / 34

while there is improvement

1. Compute min[li], max[li], max[i] by solving LPs (for all i or for an interesting

subsets)

2. Solve problem (LPB)

end

At the root node the bounding procedure is repeated until the improvement goes below a

certain. tolerance (10−4
) whereas at the nodes there is a maximum number of times and

the tolerance improvement is set to 10−2
to decrease the computational time
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.

We have two cases:
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.

We have two cases:

(a) x∗
i ∈ (min[i],max[i]), then x̄ = x∗
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.

We have two cases:

(a) x∗
i ∈ (min[i],max[i]), then x̄ = x∗

(b) Otherwise x̄ = xLB
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.

We have two cases:

(a) x∗
i ∈ (min[i],max[i]), then x̄ = x∗

(b) Otherwise x̄ = xLB

Four children are generated:
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We select for branching the index i that maximizes the gap between

li(x) =
∑n

j=1
Sijxj and its best McCormick limitation fi at the node

Let xLB
i be the value of xi at the solution of problem (LPB), and x∗

i the i-th component of

the current global upper bound, and let min[i] and max[i] be the current bounds on

variable xi.

We have two cases:

(a) x∗
i ∈ (min[i],max[i]), then x̄ = x∗

(b) Otherwise x̄ = xLB

Four children are generated:

1. xi ≤ x̄i, Si,:x ≤ Si,:x̄→ update max[i], max[li] and the corresponding

McCormick inequality is updated

2. xi ≤ x̄i, Si,:x ≥ Si,:x̄→ update max[i], min[li] and the corresponding

McCormick inequaliies are updated

3. xi ≥ x̄i, Si,:x ≤ Si,:x̄→ update min[i], max[li] and the corresponding

McCormick inequalities are updated

4. xi ≥ x̄i, Si,:x ≥ Si,:x̄→ update min[i], min[li] and the corresponding

McCormick inequality is updated
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At the root node after the bounding procedure has been applied, there is also a spatial

branching on the variable v (bounding the linear term), computing its maximum and

minimum value vmax and vmin, and dividing the interval in small sub intervals that are

finer around v∗ (value at the current GUB)
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At the root node after the bounding procedure has been applied, there is also a spatial

branching on the variable v (bounding the linear term), computing its maximum and

minimum value vmax and vmin, and dividing the interval in small sub intervals that are

finer around v∗ (value at the current GUB)

To improve the speed of convergence, we substitute the constraints

v +

n
∑

i=1

fi ≤ GUB, t ≤ GUB

with

v +

n
∑

i=1

fi ≤ (1− tol)GUB t ≤ (1− tol)GUB

with tol = 10−3
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender

1. can miss the attacker (i 6= j), in which case there will be a Weibull-distributed random

loss
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender

1. can miss the attacker (i 6= j), in which case there will be a Weibull-distributed random

loss

2. can hit the attacker at i = j, in which case there is zero loss.
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender

1. can miss the attacker (i 6= j), in which case there will be a Weibull-distributed random

loss

2. can hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. We consider the problem

of the defender.
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender

1. can miss the attacker (i 6= j), in which case there will be a Weibull-distributed random

loss

2. can hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. We consider the problem

of the defender.

The Nash equilibrium then gives the optimal random choice of spot checks to minimize the

average loss.
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The game is about spot checking a set of n places to guard them against an adversary.

The places are spatially scattered, with a directed weighted graph describing the

connections by an edge with a random length (and the graph is built strongly connected).

The payoffs in the game are given by Matrix A, and are interpreted as the loss that the

defending player 1 suffers when checking place i while the attacker is at place j. So, the

defender

1. can miss the attacker (i 6= j), in which case there will be a Weibull-distributed random

loss

2. can hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. We consider the problem

of the defender.

The Nash equilibrium then gives the optimal random choice of spot checks to minimize the

average loss.

To avoid trivialities, the payoff matrices were constructed not to admit pure strategy

equilibria, so that the optimum (without switching cost) is necessarily a mixed strategy.
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If the defender is currently at position i and next needs to check the (non-adjacent) place

j, then the cost for the switch from i to j is the shortest path in the aforementioned graph .

Since the graph is directed, the matrix is generally nonsymmetric.
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If the defender is currently at position i and next needs to check the (non-adjacent) place

j, then the cost for the switch from i to j is the shortest path in the aforementioned graph .

Since the graph is directed, the matrix is generally nonsymmetric.

The weights in the graph are chosen exponentially distributed with rate parameter

λ = 0.2, and the Weibull distribution for the losses has a shape parameter 5 and scale

parameter about 10.63, so that both distributions have the same variance of 5.
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If the defender is currently at position i and next needs to check the (non-adjacent) place

j, then the cost for the switch from i to j is the shortest path in the aforementioned graph .

Since the graph is directed, the matrix is generally nonsymmetric.

The weights in the graph are chosen exponentially distributed with rate parameter

λ = 0.2, and the Weibull distribution for the losses has a shape parameter 5 and scale

parameter about 10.63, so that both distributions have the same variance of 5.

The size of the instances ranges from n = 50 to n = 200, but for the security application

the most interesting ones are the ones with n around 50.
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n α GAP < 1% GAP ≤ 0.1%
# nodes time # nodes time

50 0.25 1 3.331 1 3.331

50 0.35 10 127.70 130 194.473

50 0.5 35 60.276 170 125.36

50 0.65 195 113.99 498 177.14

50 0.75 339 155.71 614 184.7

50 0.85 10 6.94 10 6.94

75 0.25 1 9.16 1 9.16

75 0.35 10 75.96 2054 1205.27

75 0.5 10 148.49 31290 27378.15

75 0.65 215 318.88 4022 2564.95

75 0.75 2271 2412.97 8082 4787.73

75 0.85 463 314.9 662 342.29

100 0.25 1 11.63 1 11.63

100 0.35 10 252.63 10 252.63

100 0.5 10 572.86

100 0.75 3307 7686.14 99478 118842.09

100 0.85 855 1320.47 1350 1470.33
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We propose a B&B approach tailored for solving finite games with switching costs, that is a

NP complete problem
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We propose a B&B approach tailored for solving finite games with switching costs, that is a

NP complete problem

The algorithm is extremely effective in reducing the gap below 1%, while it is slow in

closing the gap at dimension n ≥ 80
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We propose a B&B approach tailored for solving finite games with switching costs, that is a

NP complete problem

The algorithm is extremely effective in reducing the gap below 1%, while it is slow in

closing the gap at dimension n ≥ 80

The instances are easy for α ≤ 0.35 and α ≥ 0.8 whereas they are much harder for

values of α close to 0.5
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We propose a B&B approach tailored for solving finite games with switching costs, that is a

NP complete problem

The algorithm is extremely effective in reducing the gap below 1%, while it is slow in

closing the gap at dimension n ≥ 80

The instances are easy for α ≤ 0.35 and α ≥ 0.8 whereas they are much harder for

values of α close to 0.5

From a practical point of view the interesting instances have a size close to n = 50 and a

gap of 1% would already be enough
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