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The topic

Constrained Integer Quadratic Programming
Given a symmetric matrix Q, find

min x⊤Qx + c⊤x = q(x)
Ax = b

xi ∈ {li , . . . , ui} i = 1, . . . , n
(CIQP)

with A m × n matrix, b ∈ R
m.
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Foreword
Unfortunately I never worked on copositive topic with Manuel so that I
cannot joke on how much (co)positive was our friendship and
collaboration.
Actually we worked on StQP which is indefinite✞

✝
☎
✆It sounds not nice !
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Unfortunately I never worked on copositive topic with Manuel so that I
cannot joke on how much (co)positive was our friendship and
collaboration.
Actually we worked on StQP which is indefinite✞

✝
☎
✆It sounds not nice !

But Manuel is able to take the positive aspects of things (and life)✞
✝

☎
✆StQP is ....

• nonlinear enough to be hard

• smooth enough to be appealing

• combinatorics related to connect continuous and discrete communities

• copositive enough ......to think positive !
✞
✝

☎
✆However Integer StQP is easy
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The topic

In this talk I focus on the how to define lower bounds for CIQP that

• can be computed quickly

• can be embedded effectively in a fast branch-and-bound procedure

This is a review of a joint research with Christoph Buchheim, Marianna De
Santis, Mauro Piacentini and (new entry) Giorgio Grani

L. Palagi OGDA 2018 4 / 28
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The topic

Branch and bound algorithm

Branch...

• Branching rule:

⊲ The order in which primal variables are fixed is predetermined
(suitable for small domains {l , . . . , u})

• [Buchheim, Caprara, Lodi - Math. Progr. (2012)]
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• Branching rule:

⊲ The order in which primal variables are fixed is predetermined
(suitable for small domains {l , . . . , u})

• [Buchheim, Caprara, Lodi - Math. Progr. (2012)]

...and Bound

• Upper bound (incumbent) computation:

⊲ Once all the integer variables are fixed, an integer feasible solution is
found and the current upper bound can be eventually updated

• Lower bound computation:

⊲ Solve the dual problem of a continuous relaxation
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The unconstrained case

Drawing inspiration from unconstrained case

Consider the unconstrained case with Q 6� 0

min x⊤Qx + c⊤x

x ∈ {l , . . . , u}n
(IQP)

The continuous relaxation of this problem,

min q(x) = x⊤Qx + c⊤x

s.t. l ≤ x ≤ u

x ∈ R
n

is an NP-hard problem in the case Q 6� 0.
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The unconstrained case

Continuous relaxation of the problem

Find an ellipsoid
E(H)

such that

[l , u] ⊆ E(H) = {x ∈ R
n | (x − x0)⊤H(x − x0) ≤ 1},

where H � 0 and x0 denotes the center of the ellipsoid.

Obtain a lower bound by solving

min q(x) = x⊤Qx + c⊤x

x ∈ E(H) .
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The unconstrained case

Ellipsoidal relaxation

min q(x) = x⊤Qx + c⊤x

s.t. x ∈ E(H) .

• (Global) minimize a non-convex q(x) over E(H) can be done
efficiently: in P
[Vavasis, 1991], [Ye, 1991]

• Strong duality holds
[Conn, Gould, Toint - SIAM (2000)]; [Moré - OMS (1993)];
[Rendl, Wolkowicz - MP (1997)]; [Pong, Wolkowicz - COAP (2014)]; ...

• Efficient algorithm that provides dual bound

(Q + λH)x = −c λ ≥ 0 Q + λH � 0

[Moré, Sorensen - SIAM J. Sci. Statist. Comput. (1983)]
L. Palagi OGDA 2018 8 / 28
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The unconstrained case

We look for the best ellipsoid

Level sets of indefinite quadratic function
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Figure : Different choices of the ellipsoid E(H) give rise to different bounds.

L. Palagi OGDA 2018 9 / 28



sap-logo

The unconstrained case

We look for the best ellipsoid

In a preprocessing phase, we compute an approximated solution of the
following problem:

max
H∈Hdiag

q∗(H)

where Hdiag defines a closed simplex in R
n

Hdiag :=
{
H � 0 | H = Diag(h),

n∑

i=1

hi = 1
}
,

and
q∗(H) := min

x∈Rn
{q(x) | x⊤Hx = 1} .

L. Palagi OGDA 2018 10 / 28
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The unconstrained case

Fixing order matters!

Consider fixing e.g. n, n − 1, . . . , k , . . . , 3, 2, 1
Nodes in the branching tree at the same level k (when k variabes have
been fixed) share the same quadratic part




q11 . . . q1k
q21 . . . q2k
...

...
...

qk−1,1 . . . qk−1,k−1



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been fixed) share the same quadratic part


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q21 . . . q2k
...

...
...

qk−1,1 . . . qk−1,k−1




All heavy computations for solving the dual problem
can be moved in the preprocessing

Diagonalization of Qk for all k
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The unconstrained case

Fixing order matters!

Exploit convexity

• Fixing may lead to quadratic problem at the node with QI � 0.

• By the convexity we can improve cut off of nodes
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• Fixing may lead to quadratic problem at the node with QI � 0.

• By the convexity we can improve cut off of nodes

x̄i

Upper Bound

0 1 2 3 4 6 7 8 9xi = 5

we fix xi to integer values
in increasing distance to x̄i
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The unconstrained case

Fixing order matters!

Exploit convexity

• Fixing may lead to quadratic problem at the node with QI � 0.

• By the convexity we can improve cut off of nodes

x̄i

Upper Bound

0 1 2 3 4 5 6 7 8 9

by the convexity of f
we can cut off the current node
and all its outer siblings
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Ellipsoidal Non-convex Relaxations: Learned lesson

• Strong duality holds: we can solve the dual problem (approximately).

• Using an axis-parallel ellipsoid improve computations and the shape of
the ellipsoid counts;

• Algorithms for continuous optimization require re-engineerization
because in a branching scheme repeated solution of subproblems with
the same structure should be performed

Preprocessing and warm start are crucial elements
that speed up the process B&B

L. Palagi OGDA 2018 13 / 28
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Constrained IQP

HOW TO EXTEND THE APPROACH TO THE PRESENCE
OF LINEAR EQUALITY CONSTRAINTS?

min x⊤Qx + c⊤x

Ax=b
x ∈ {l , . . . , u}n

(CIQP)
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Constrained case: relaxations

Consider non-convex CIQP (Q 6� 0)
Again continuous relaxation to x ∈ [l , u]n ⊃ {l , . . . , u}n is still NP-hard
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Constrained case: relaxations

Consider non-convex CIQP (Q 6� 0)
Again continuous relaxation to x ∈ [l , u]n ⊃ {l , . . . , u}n is still NP-hard
Trivially we get

{x : Ax = b, {l , . . . , u}n} ⊆ [l , u]n ⊆ E(H)

and a bound is obtained by solving

min
x∈E(H)

q(x)

Linear constraints are ”forgotten”.

Can we do better ?
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Constrained IQP

The elimination approach: relax and reduce
At each node a bound is obtained by solving

min q(x) = x⊤Qx + c⊤x

Ax = b

x ∈ E(H)

(TQP)

where the axis parallel ellipsoid satisfies

[l , u] ⊆ E(H) = {x ∈ R
n | (x − x0)⊤H(x − x0) ≤ 1},
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The elimination approach: relax and reduce
At each node a bound is obtained by solving

min q(x) = x⊤Qx + c⊤x

Ax = b

x ∈ E(H)

(TQP)

where the axis parallel ellipsoid satisfies

[l , u] ⊆ E(H) = {x ∈ R
n | (x − x0)⊤H(x − x0) ≤ 1},

Tackling the linear constraints Ax = b

• By elimination: by using the familiar partitioning of x into basic and
non-basic variables xB and xN , thus BxB + NxN = b.

• By exact penalization
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Constrained IQP The elimination approach

The reduced problem
The xB variables can be eliminated via substituting

xB = B−1b − B−1NxN

After some algebra, we get the smaller problem in the non-basic variables
xN ∈ R

k (k = n −m)

f ∗proj(H) = min x⊤N Q̃xN + c̃⊤xN + d

(xN − x0N)
⊤H̃(xN − x0N) ≤ α

xN ∈ R
k ,

where

Q̃ = QNN + N⊤B−⊤QBBB
−1N − Q⊤

BNB
−1N − N⊤B−⊤QBN

H̃ = HNN + N⊤B−⊤HBBB
−1N − HNBB

−1N − N⊤B−⊤HBN

L. Palagi OGDA 2018 17 / 28
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Constrained IQP The elimination approach

Pros - Cons

• Pros: shape of the objective function and of the ellipsoid ”follows”
shape of the linear constraint
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Constrained IQP The elimination approach

Pros - Cons

• Pros: shape of the objective function and of the ellipsoid ”follows”
shape of the linear constraint

• Pros: when fixing is predetermined, matrices Q̃ℓ and H̃ℓ only depend
on the depth ℓ of the node in a B&B tree.
All time-consuming calculations concerning these n different
matrices can be performed in a preprocessing phase.

• Light Cons: Vectors c̃ , d , α depend on the values at which the
variables have been fixed but they can be updated in an incremental
fashion.

• Cons: H̃ is no more diagonal and depends on the original H in a
difficult way

• Optimizing the bound
max

H∈Hdiag

f ∗proj (H)

may be not straightforward
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Constrained IQP The penalty approach

Penalty approach

[Poljak,Rendl,Wolkowitcz - JOGO(1995)]

Theorem

There exists M̄ ∈ R such that, for all M ≥ M̄

min x⊤Qx + c⊤x

s.t. Ax = b

l ≤ x ≤ u

x ∈ Z
n

=

min x⊤Qx + c⊤x +M‖Ax − b‖2

s.t. l ≤ x ≤ u

x ∈ Z
n

L. Palagi OGDA 2018 19 / 28
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Constrained IQP The penalty approach

The value of M can be found using

M̄ = ub − lb > 0,

where
ub = q(x̂)

where x̂ is a feasible integer point x̂ ∈ {l , u} ∩ {x ∈ R
n : Ax = b};

lb = q(x̃) = min
x∈C

q(x) for any

with C such that C ⊇ X ∩ F .

e.g. C = E(H) ⊇ [l , u]n so that

lb = min x⊤Qx + c⊤x

s.t. x ∈ E(H)

L. Palagi OGDA 2018 20 / 28
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Constrained IQP The penalty approach

Relaxation

It is a box constrained problem over integer variables

min
x∈Rn

x⊤(Q +MATA)x + (c − 2MATb)⊤x +M‖b‖2

x ∈ {l , . . . , u}n
(BQP)
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Relaxation

It is a box constrained problem over integer variables

min
x∈Rn

x⊤(Q +MATA)x + (c − 2MATb)⊤x +M‖b‖2

x ∈ {l , . . . , u}n
(BQP)

Choose an axis-parallel ellipsoid E(H)

{l , . . . , u}n ⊆ E(H) = {x ∈ R
n | (x − x0)⊤H(x − x0) ≤ 1}

The value

f ∗pen(H,M) = min
x∈E(H)

x⊤(Q +MATA)x + (c − 2MATb)⊤x +M‖b‖2

gives a bound.

L. Palagi OGDA 2018 21 / 28
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Constrained IQP The penalty approach

Pros - Cons

• Pros: the approach for the box integer quadratic case directly applied

• Pros: Additional heavy computations due to Ax = b only in
preprocessing
Linear constraints are taken into account in the shape of the objective
function.
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Constrained IQP The penalty approach

Pros - Cons

• Pros: the approach for the box integer quadratic case directly applied

• Pros: Additional heavy computations due to Ax = b only in
preprocessing
Linear constraints are taken into account in the shape of the objective
function.

• Cons: shape of the ellipsoid does not ”follow” the shape of the linear
constraint: the bound may be bad

• Pros: The best (or a better) bound with parallel axis ellipsoid can be
found by solving (approximately) by a subgradient approach

max
H∈Hdiag

f ∗pen(H,M)

L. Palagi OGDA 2018 22 / 28
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Theoretical comparison

Projection versus penalty

Which one gives better bound ?
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Which one gives better bound ?

Let H ≻ 0 such that {l , . . . , u}n ⊆ E(H).

min q(x)
Ax = b

x⊤Hx ≤ 1
= lim

M→∞

min q(x) +M‖Ax − b‖2

x⊤Hx ≤ 1.
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Theoretical comparison

Projection versus penalty

Which one gives better bound ?

Let H ≻ 0 such that {l , . . . , u}n ⊆ E(H).

min q(x)
Ax = b

x⊤Hx ≤ 1
= lim

M→∞

min q(x) +M‖Ax − b‖2

x⊤Hx ≤ 1.

As a sideproduct of such result, we get that for M > 0 and H ≻ 0 the
lower bound computed by the penalty approach is less (weaker) or equal
than the one computed by the projection approach.
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Theoretical comparison

SOME NUMERICAL RESULTS
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Numerical experience

Numerical experience

• (GQIP) Penalty formulation embedded in the B&B scheme defined in
[Buchheim, De Santis, Palagi, Piacentini, SIOPT 2013]

• Comparison with the MIQP solver of CPLEX 12.6
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Numerical experience

• (GQIP) Penalty formulation embedded in the B&B scheme defined in
[Buchheim, De Santis, Palagi, Piacentini, SIOPT 2013]

• Comparison with the MIQP solver of CPLEX 12.6

Benchmark:

• constrained integer quadratic instances from
http://cedric.cnam.fr/~lamberta/Library/eiqp_iiqp.html

⊲ Dimension n = 20, 30, 40
⊲ only one constraint, consisting in a linear equation with all positive

entries a⊤x = b

⊲ three different right hand side b;
⊲ [0, u], and u = 1, 2, 10;
⊲ For each dimension 15 instances are available: total of 405 instances.

• We consider 3h as time limit

• Average over the successfully solved instances are reported (Time and ♯

nodes).
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⊲ For each dimension 15 instances are available: total of 405 instances.

• We consider 3h as time limit

• Average over the successfully solved instances are reported (Time and ♯

nodes).

It is not StQP, but....

it is the easiest generalization which is meaningful with integer variables
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Comparison with the MIQP solver of CPLEX 12.6

[0,1]
n Alg Sol Time ♯ nodes
20 GQIP 15 0.01 3501.40

CPLEX 15 0.51 123.47
30 GQIP 15 0.09 17938.47

CPLEX 15 1.98 314.07
40 GQIP 15 1.15 169471.40

CPLEX 15 7.50 640.20

[0,2]
n Alg Sol Time ♯ nodes
20 GQIP 15 0.05 34303.47

CPLEX 15 131.42 191111.20
30 GQIP 15 3.18 1066773.87

CPLEX 2 5957.31 2847726.00
40 GQIP 11 63.28 10085272.82

CPLEX 1 1554.17 239087.00

[0,10]
n Alg Sol Time ♯ nodes
20 GQIP 1 32.98 18428173.00

CPLEX 15 18.77 9339.00
30 GQIP 0 – –

CPLEX 14 1203.30 130090.64
40 GQIP 0 – –

CPLEX 6 2864.64 151549.00

Table : Results for instances with b = u
2

∑n

i=1 ai .
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THANK YOU
for you attention and

SPECIAL THANKS
to the organizers of this party

Happy 60o Manuel
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