<u>P. Amaral</u> Department of Mathematics, University Nova de Lisboa

### 60th birthday of Immanuel Bomze Optimization, Game Theory, and Data Analysis

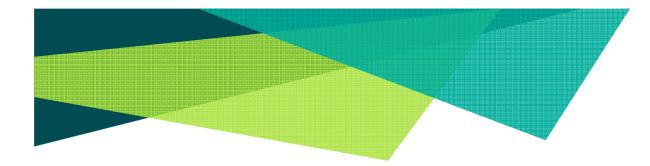
Copositivity in fractional optimization: The testimony of a copositive friendship



FACUI DADF DF

**CIÊNCIAS E TECNOLOGIA** 

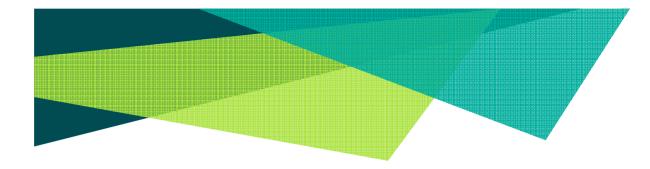
**UNIVERSIDADE NOVA** DE LISBOA



## OUTLINE

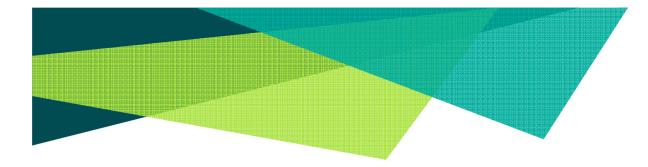
- TWO EXAMPLES OF DIFFICULT FRACTIONAL PROBLEMS
  - INFEASIBILITY ANALYSIS
  - LINEAR DISCRIMINANT ANALYSIS FOR INTERVAL AND HISTOGRAM DATA
- COMPLETELY POSITIVE FORMULATIONS FOR GENERAL FRACTIONAL PROBLEMS
- LOWER BOUNDS
- MINMAX FRACTIONAL QUADRATIC PROBLEMS
- CONCLUSIONS





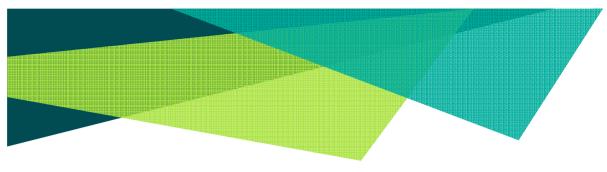
# First example: Infeasibility in linear systems





### 2009 - Coimbra





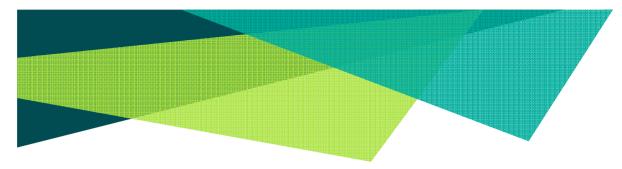
Production planning problem

- Amount of products >= contract
- Consuption <= raw materials</li>
- Staff <= availability
- Profit >= minimum
- Costs <= limit

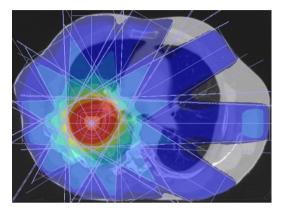
Class timetabling problem

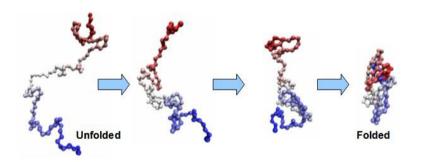
- Schedule classes in the week
- Schedule classes in the day
- Rooms available
- Full professor classes timewindow
- No empty hours

### Hard and soft constraints



### **Radiation Treatment Planning**





## **Protein Folding**

Transmitter A

XXX

Receiver 2

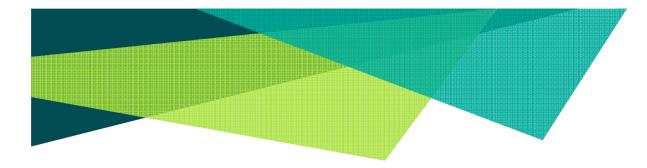
Receiver 3

XXX

Receiver 1

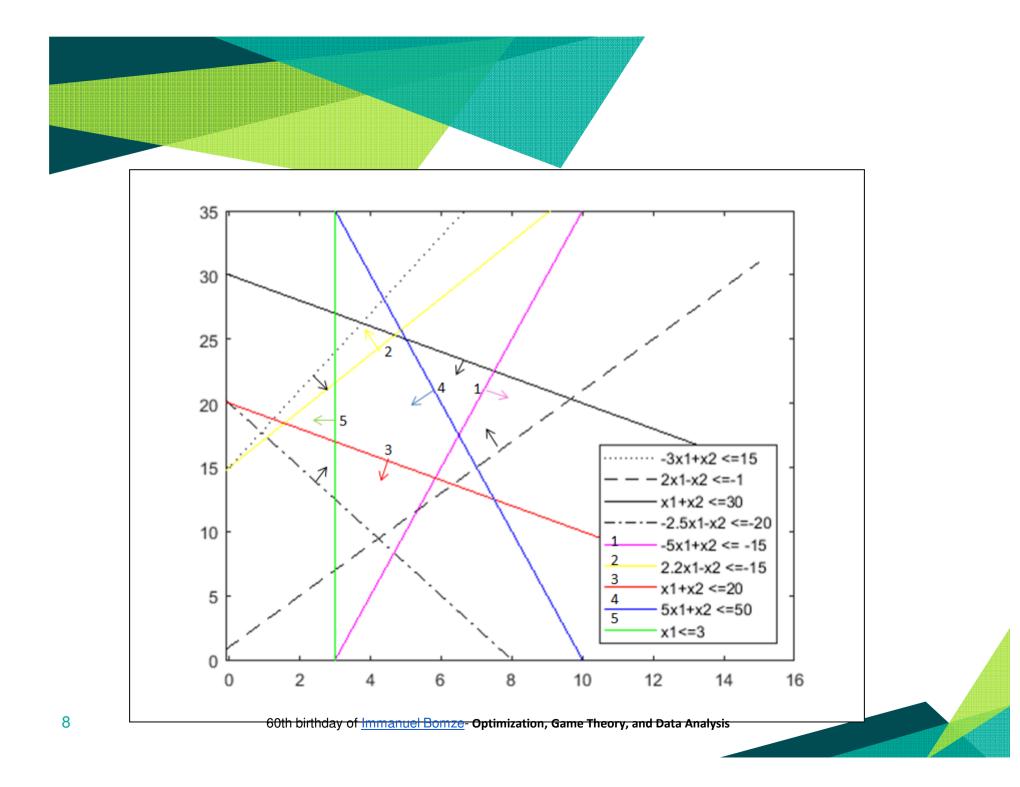
## **Digital Video Broadcasting**

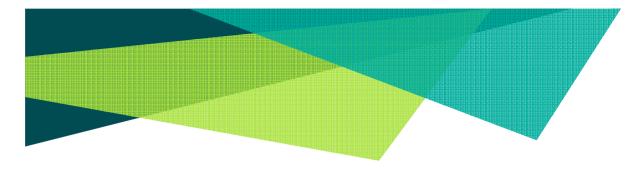




|                            | $(-3x_1)$  | $+x_2 \leq$           | 15  |  |  |  |  |  |
|----------------------------|------------|-----------------------|-----|--|--|--|--|--|
| hard constraints           | $2x_1$     | $-x_2 \leq$           | -1  |  |  |  |  |  |
| nard constraints (         |            | $+x_2 \leq$           |     |  |  |  |  |  |
|                            | $-2.5x_1$  | $-x_2 \leq$           | -20 |  |  |  |  |  |
|                            | $(-5x_1)$  | $+x_2 \leq$           | -15 |  |  |  |  |  |
|                            | $2.2x_{1}$ | $+x_2 \leq -x_2 \leq$ | -15 |  |  |  |  |  |
| soft constraints $\langle$ | $x_1$      | $+x_2 \leq$           | 20  |  |  |  |  |  |
|                            | $5x_1$     | $+x_2 \leq$           | 50  |  |  |  |  |  |
|                            | $x_1$      | $\leq$                | 3   |  |  |  |  |  |
| $x_1, x_2 \ge 0$           |            |                       |     |  |  |  |  |  |



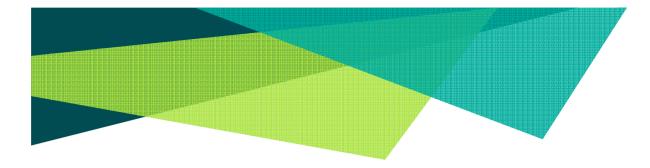




 $\min\sum_i\sum_j h_{i,j}^2 + \sum p_i^2$ 

| hard constraints $\begin{cases} -3x_1 + x_2 \le 15\\ 2x_1 - x_2 \le -1\\ x_1 + x_2 \le 30\\ -2.5x_1 - x_2 \le -20 \end{cases}$                              | hard constraints $\begin{cases} -3x_1 + x_2 \le 15\\ 2x_1 - x_2 \le -1\\ x_1 + x_2 \le 30\\ -2.5x_1 - x_2 \le -20 \end{cases}$                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| soft constraints $\begin{cases} -5x_1 + x_2 \le -15\\ 2.2x_1 - x_2 \le -15\\ x_1 + x_2 \le 20\\ 5x_1 + x_2 \le 50\\ x_1 \le 3 \end{cases}$ $x_1, x_2 \ge 0$ | soft constraints $\begin{cases} (-5+h_{11})x_1 & +(1+h_{12})x_2 \leq & -15+p_1\\ (2.2+h_{21})x_1 & +(-1+h_{22})x_2 \leq & -15+p_2\\ (1+h_{31})x_1 & +(1+h_{32})x_2 \leq & 20+p_3\\ (5+h_{41})x_1 & +(1+h_{42})x_2 \leq & 50+p_4\\ (1+h_{51})x_1 & +(0+h_{52})x_2 \leq & 3+p_5\\ x_1,x_2 \geq 0 \end{cases}$ |



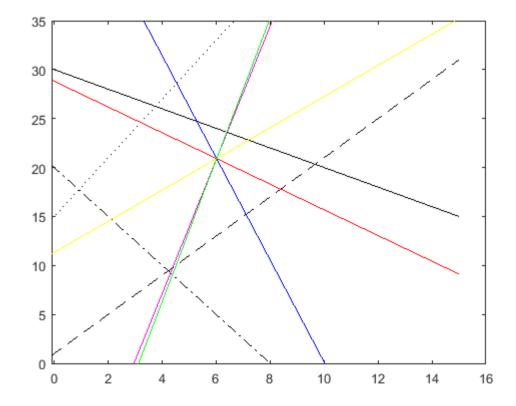


| Co | Command Window |            |            |             |             |  |  |  |  |  |
|----|----------------|------------|------------|-------------|-------------|--|--|--|--|--|
|    |                |            |            |             |             |  |  |  |  |  |
|    | Iteration      | Open nodes | Total time | Lower bound | Upper bound |  |  |  |  |  |
|    | 1              | 1          | 000:00:02  | 0.00000     | 0.307097    |  |  |  |  |  |
|    | 1              | 1          | 000:00:07  | 0.259773    | 0.307097    |  |  |  |  |  |
|    | 684            | 322        | 000:00:37  | 0.307074    | 0.307097    |  |  |  |  |  |
|    | 1984           | 859        | 000:01:08  | 0.307085    | 0.307097    |  |  |  |  |  |
|    | 3518           | 1247       | 000:01:38  | 0.307089    | 0.307097    |  |  |  |  |  |
|    | 5174           | 1482       | 000:02:08  | 0.307091    | 0.307097    |  |  |  |  |  |
|    | 6959           | 1157       | 000:02:38  | 0.307093    | 0.307097    |  |  |  |  |  |
|    | 8942           | 960        | 000:03:09  | 0.307094    | 0.307097    |  |  |  |  |  |
|    | 11116          | 612        | 000:03:39  | 0.307095    | 0.307097    |  |  |  |  |  |
|    | 13130          | 0          | 000:04:01  | 0.307096    | 0.307097    |  |  |  |  |  |
|    |                |            |            |             |             |  |  |  |  |  |
|    | Cleaning up    |            |            |             |             |  |  |  |  |  |

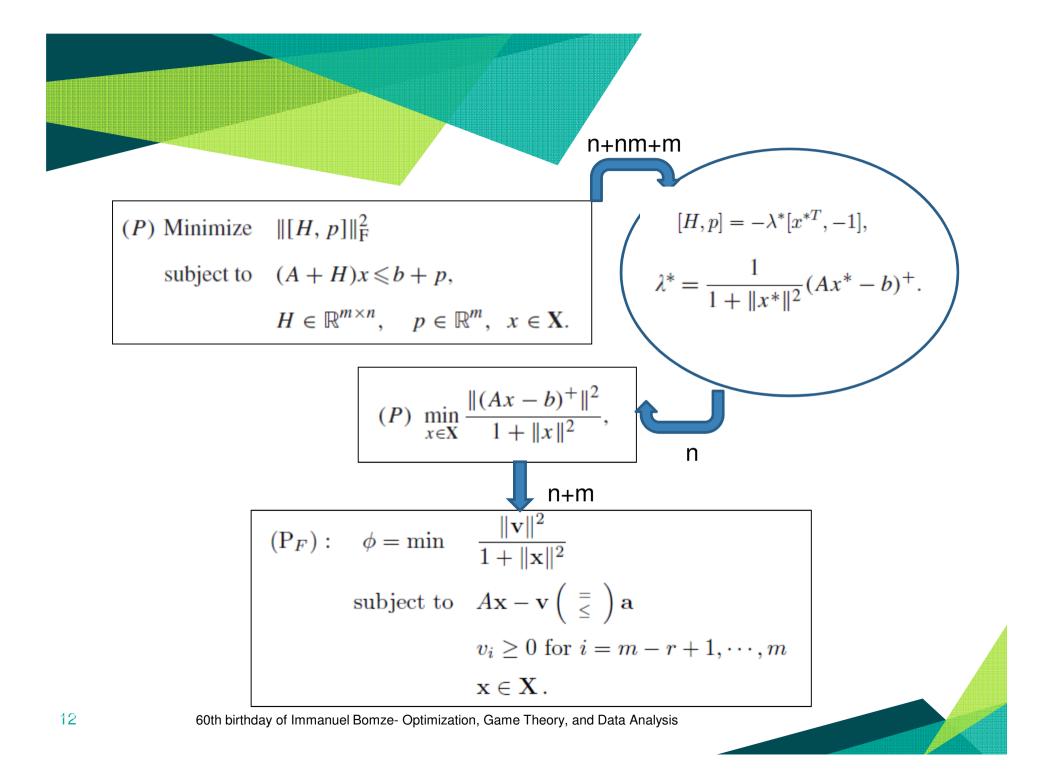
\*\*\* Normal completion \*\*\*

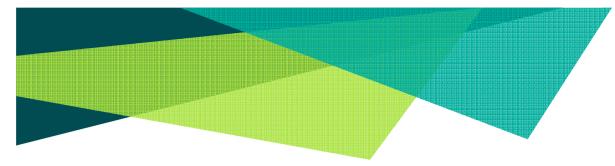












| Iteration | Open nodes | Total time | Lower bound | Upper bound |
|-----------|------------|------------|-------------|-------------|
| 1         | 1          | 000:00:00  | 0.00000     | 0.307097    |
| 1         | 0          | 000:00:01  | 0.307096    | 0.307097    |

$$x = \begin{bmatrix} 6.0158\\ 20.9101 \end{bmatrix}$$
$$v = \begin{bmatrix} 5.8310\\ 7.3247\\ 6.9259\\ 0.9892\\ 3.0158 \end{bmatrix}$$



| Name          | т  | n  |  |
|---------------|----|----|--|
| Prob6–Prob10  | 20 | 10 |  |
| Prob11–Prob15 | 30 | 15 |  |
| Prob16–Prob20 | 40 | 20 |  |

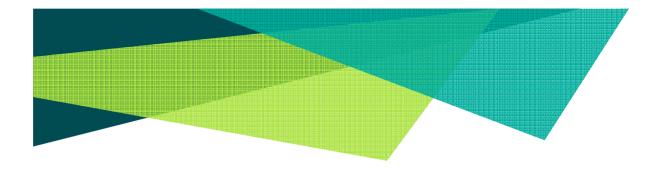
#### Table 3

Computational results

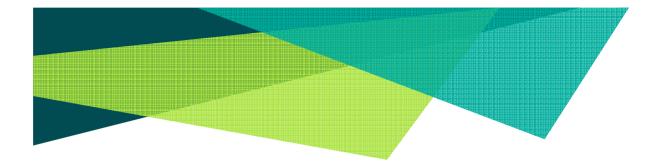
|          | RLT-BB |      |        |                 |                 |       |        |
|----------|--------|------|--------|-----------------|-----------------|-------|--------|
| Problems | ND     | CPU  | ITER   | INITUB          | VALOPT          | NDOPT | NUPDUE |
| Galenet  | 1      | 0    | 133    | 3.7313          | 3.7313          | 1     | 0      |
| Itest2   | 27     | 0    | 751    | 0.4257          | 0.4257          | 1     | 0      |
| Itest6   | 1      | 0    | 37     | 82 654 535.9118 | 82 654 535.9118 | 1     | 0      |
| Bgprtr   | 1      | 0.01 | 194    | 1264.5915       | 1264.5915       | 1     | 0      |
| Forest6  | 1      | 0.08 | 471    | 3458.7896       | 3458.7896       | 1     | 0      |
| Klein1   | 221    | 4.62 | 23 919 | 34.6664         | 34.6664         | 1     | 0      |
| Woodinfe | 1      | 0    | 8193   | 0.0019          | 0.0019          | 1     | 0      |
| Prob4    | 5      | 0    | 217    | 157.6815        | 157.6815        | 1     | 0      |
| Prob5    | 4      | 0    | 187    | 262.8295        | 262.8295        | 1     | 0      |
| Prob6    | 5      | 0.01 | 211    | 315.1673        | 315.1673        | 1     | 0      |
| Prob7    | 68     | 0    | 1196   | 214.8726        | 214.8726        | 1     | 0      |
| Prob8    | 1      | 0    | 103    | 2187.0132       | 2187.0132       | 1     | 0      |
| Prob9    | 20     | 0.01 | 522    | 149.3484        | 149.3484        | 1     | 0      |
| Prob10   | 29     | 0    | 604    | 250.8560        | 250.8560        | 1     | 0      |
| Prob11   | 26     | 0.01 | 500    | 396.0405        | 396.0405        | 1     | 0      |
| Prob12   | 3      | 0.01 | 184    | 1130.5302       | 1130.5302       | 1     | 0      |
| Prob13   | 12     | 0.02 | 489    | 679.4526        | 679.4526        | 1     | 0      |
| Prob14   | 6      | 0.02 | 382    | 756.9513        | 756.9513        | 1     | 0      |
| Prob15   | 476    | 1.08 | 23 552 | 365.3541        | 364.4484        | 424   | 13     |
| Prob16   | 26     | 0.12 | 2052   | 1121.5359       | 1121.5359       | 1     | 0      |
| Prob17   | 27     | 0.13 | 1980   | 1092.9802       | 1092.9802       | 1     | 0      |
| Prob18   | 9      | 0.04 | 623    | 1750.9055       | 1738.2852       | 8     | 4      |
| Prob19   | 25     | 0.17 | 1999   | 1104.5614       | 1104.5614       | 1     | 0      |
| Prob20   | 199    | 1.26 | 18 410 | 944.7827        | 944.7827        | 1     | 0      |

| able 1: Copositive Relaxation versus Gloptipoly 3 and BARON |       |          |     |         |             |     |            |  |
|-------------------------------------------------------------|-------|----------|-----|---------|-------------|-----|------------|--|
| Instance                                                    | Cop R | Time1(s) | Gap | GPM R   | Time2(s)    | St. | root B.    |  |
| ABJ5_0                                                      |       | •        |     | -0.5275 | 1.045e+00   | 1   | -26.1028   |  |
| ABJ5_1                                                      |       |          |     | -0.5414 | 1.014e + 00 | 1   | -11.8308   |  |
| ABJ5_2                                                      |       |          |     | -0.5089 | 9.672e-01   | 1   | -11.9631   |  |
| ABJ5_3                                                      |       |          |     | -0.2207 | 1.310e + 00 | 1   | -3.9613    |  |
| ABJ5_4                                                      |       |          |     | -0.9428 | 9.984e-01   | 1   | -0.8123    |  |
| ABJ5_5                                                      |       |          |     | +0.2225 | 1.108e+00   | 1   | -2.2940    |  |
| ABJ5_6                                                      |       |          |     | -0.3671 | 9.828e-01   | 1   | -8.6291    |  |
| ABJ5_7                                                      |       |          |     | -0.0657 | 8.892e-01   | 1   | -5.1034    |  |
| ABJ5_8                                                      |       |          |     | -0.3708 | 9.516e-01   | 1   | -0.4031    |  |
| ABJ5_9                                                      |       |          |     | -0.5753 | 6.708e-01   | 1   | -0.4553    |  |
| ABJ10_0                                                     | 1     |          |     | -0.1962 | 7.010e+02   | 1   | -23.9325   |  |
| ABJ10_1                                                     |       |          |     | -0.4882 | 5.737e + 02 | 1   | -0.4587    |  |
| ABJ10_2                                                     |       |          |     | +0.4288 | 6.395e + 02 | 1   | -3.4076    |  |
| ABJ10_3                                                     |       |          |     | -0.1840 | 6.298e + 02 | 1   | -12.3357   |  |
| ABJ10_4                                                     |       |          |     | -0.2689 | 5.122e + 02 | 1   | -0.2635    |  |
| ABJ10_5                                                     |       |          |     | -0.6198 | 6.619e + 02 | 1   | -55.5414   |  |
| ABJ10_6                                                     |       |          |     | -0.8749 | 7.123e + 02 | 1   | -0.8265    |  |
| ABJ10_7                                                     |       |          |     | -0.0760 | 6.219e + 02 | 1   | -25.4559   |  |
| ABJ10_8                                                     |       |          |     | -0.4558 | 6.239e + 02 | 1   | -0.5056    |  |
| ABJ10_9                                                     |       |          |     | -0.1794 | 6.183e + 02 | 1   | -0.1919    |  |
| ABJ50_0                                                     | -     |          |     | O of M  | -           |     | -502.4740  |  |
| ABJ50_1                                                     |       |          |     | O of M  | -           |     | -0.7856    |  |
| ABJ50_2                                                     |       |          |     | O of M  | -           |     | -0.6135    |  |
| ABJ50_3                                                     |       |          |     | O of M  | -           |     | -1463.1800 |  |
| ABJ50_4                                                     |       |          |     | O of M  | -           |     | -451.7790  |  |
| ABJ50_5                                                     |       |          |     | O of M  | -           |     | -0.3962    |  |
| ABJ50_6                                                     |       |          |     | O of M  | -           |     | -989.5200  |  |
| ABJ50_7                                                     |       |          |     | O of M  | -           |     | -0.4914    |  |
| ABJ50_8                                                     |       |          |     | O of M  | -           |     | -490.0360  |  |
| ABJ50_9                                                     |       |          |     | O of M  | -           |     | -626.8870  |  |
| ABJ80_0                                                     | -     |          | - F | O of M  | -           |     | -1394.8500 |  |
| ABJ80_1                                                     |       |          |     | O of M  | -           |     | -0.4472    |  |
| ABJ80_2                                                     |       |          |     | O of M  | -           |     | -0.6681    |  |
| ABJ80_3                                                     |       |          |     | O of M  | -           |     | -1849.5000 |  |
| ABJ80_4                                                     | 1     |          |     | O of M  | -           |     | -0.6528    |  |
| ABJ80_5                                                     |       |          |     | O of M  | -           |     | -0.3511    |  |
| ABJ80_6                                                     |       |          |     | O of M  | -           |     | -2488.4700 |  |
| ABJ80_7                                                     | 1     |          |     | O of M  | -           |     | -1487.1000 |  |
| ABJ80_8                                                     |       |          |     | O of M  | -           |     | -736.0130  |  |
| ABJ80_9                                                     |       |          |     | O of M  |             |     | -0.5177    |  |
|                                                             |       | •        |     | 0.01.01 | -           |     | -010411    |  |

#### \_ . Т



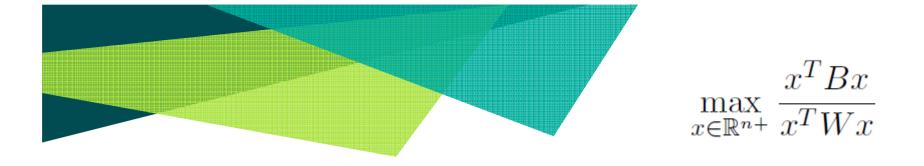
# <u>Second example</u>: Linear Discriminant Analysis for Interval and Histogram Data Paula Brito, Sónia Dias



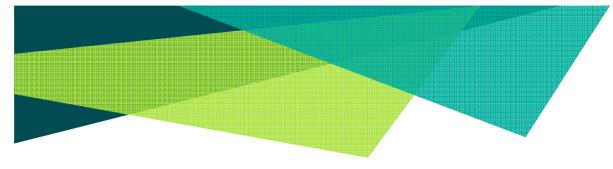
## NEWFRIENDS=FRIENDS(Immanuel)



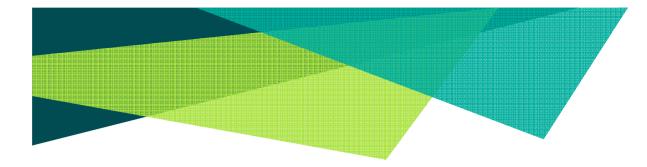




| Co | Command Window |         |         |         |         |         |         |         |  |
|----|----------------|---------|---------|---------|---------|---------|---------|---------|--|
|    | в =            |         |         |         |         |         |         |         |  |
|    |                |         |         |         |         |         |         |         |  |
|    | 0.0035         | -0.0032 | 0.0012  | -0.0004 | -0.0017 | 0.0026  | -0.0013 | 0.0018  |  |
|    | -0.0032        | 0.0035  | -0.0004 | 0.0012  | 0.0026  | -0.0017 | 0.0018  | -0.0013 |  |
|    | 0.0012         | -0.0004 | 0.0012  | 0.0007  | 0.0005  | 0.0017  | 0.0001  | 0.0011  |  |
|    | -0.0004        | 0.0012  | 0.0007  | 0.0012  | 0.0017  | 0.0005  | 0.0011  | 0.0001  |  |
|    | -0.0017        | 0.0026  | 0.0005  | 0.0017  | 0.0027  | -0.0002 | 0.0018  | -0.0004 |  |
|    | 0.0026         | -0.0017 | 0.0017  | 0.0005  | -0.0002 | 0.0027  | -0.0004 | 0.0018  |  |
|    | -0.0013        | 0.0018  | 0.0001  | 0.0011  | 0.0018  | -0.0004 | 0.0013  | -0.0005 |  |
|    | 0.0018         | -0.0013 | 0.0011  | 0.0001  | -0.0004 | 0.0018  | -0.0005 | 0.0013  |  |
|    | >> W           |         |         |         |         |         |         |         |  |
|    | W =            |         |         |         |         |         |         |         |  |
|    | 0.0553         | -0.0527 | 0.0563  | -0.0541 | -0.0511 | 0.0527  | -0.0565 | 0.0580  |  |
|    | -0.0527        | 0.0553  | -0.0541 | 0.0563  | 0.0527  | -0.0511 | 0.0580  | -0.0565 |  |
|    | 0.0563         | -0.0541 | 0.0662  | -0.0590 | -0.0544 | 0.0559  | -0.0594 | 0.0623  |  |
|    | -0.0541        | 0.0563  | -0.0590 | 0.0662  | 0.0559  | -0.0544 | 0.0623  | -0.0594 |  |
|    | -0.0511        | 0.0527  | -0.0544 | 0.0559  | 0.0557  | -0.0507 | 0.0565  | -0.0517 |  |
|    | 0.0527         | -0.0511 | 0.0559  | -0.0544 | -0.0507 | 0.0557  | -0.0517 | 0.0565  |  |
|    | -0.0565        | 0.0580  | -0.0594 | 0.0623  | 0.0565  | -0.0517 | 0.0671  | -0.0604 |  |
|    | 0.0580         | -0.0565 | 0.0623  | -0.0594 | -0.0517 | 0.0565  | -0.0604 | 0.0671  |  |



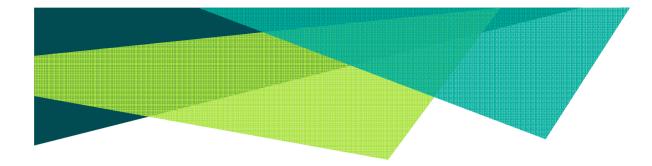
| Co                                                           | mmand Window                             |                  |                |                   |             |  |  |  |  |  |
|--------------------------------------------------------------|------------------------------------------|------------------|----------------|-------------------|-------------|--|--|--|--|--|
|                                                              |                                          | n may utilize th | e following su | ubsolver(s)       |             |  |  |  |  |  |
|                                                              | For LP: COIN                             | LP               |                |                   |             |  |  |  |  |  |
|                                                              | For NLP: COIN IPOPT with MUMPS and METIS |                  |                |                   |             |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
| Preprocessing found feasible solution with value388222693216 |                                          |                  |                |                   |             |  |  |  |  |  |
| Doing local search                                           |                                          |                  |                |                   |             |  |  |  |  |  |
| Preprocessing found feasible solution with value611023475810 |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | Solving bounding LP                      |                  |                |                   |             |  |  |  |  |  |
| Starting multi-start local search                            |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | Done with local search                   |                  |                |                   |             |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | Iteration                                | Open nodes       | Total time     | Lower bound       | Upper bound |  |  |  |  |  |
|                                                              | 1                                        | 1                | 000:00:01      | -0.100000E+52     | -0.611023   |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | -                                        | provide appropri |                | bounds.           |             |  |  |  |  |  |
|                                                              | Some model exp                           | pressions are un | bounded.       |                   |             |  |  |  |  |  |
|                                                              | -                                        | able to guarant  |                |                   |             |  |  |  |  |  |
|                                                              | Number of mis:                           | sing variable or | expression be  | ounds = 1         |             |  |  |  |  |  |
| Number of variable or expression bounds autoset = 1          |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | 1                                        |                  |                | -0.100000E+09     |             |  |  |  |  |  |
|                                                              | 1000                                     | 514              | 000:00:30      | -0.100000E+09     | -0.611023   |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
|                                                              | Cleaning up                              |                  |                |                   |             |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |
| ÷                                                            |                                          | *** Max. allowa  | ble BaR iterat | tions reached *** |             |  |  |  |  |  |
|                                                              |                                          |                  |                |                   |             |  |  |  |  |  |



### Size 8x8

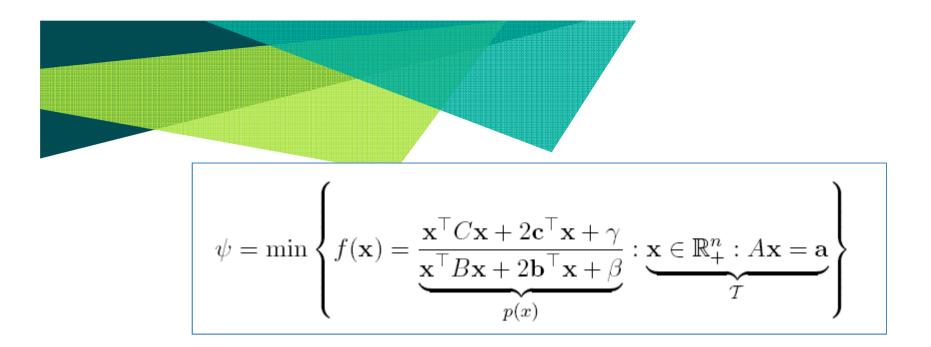
| UB |          | Sol |          |  |
|----|----------|-----|----------|--|
|    | 1,00E+09 |     | 6,17E-02 |  |
|    | 1,00E+09 |     | 1,47E-01 |  |
|    | 1,00E+09 |     | 2,56E-01 |  |
|    | 1,00E+09 |     | 1,53E-01 |  |
|    | 1,00E+09 |     | 1,19E-01 |  |
|    | 1,00E+09 |     | 1,91E-01 |  |
|    | 1,00E+09 |     | 2,24E-01 |  |
|    | 1,00E+09 |     | 2,42E-01 |  |
|    | 1,00E+09 |     | 1,32E-01 |  |
|    | 1,00E+09 |     | 3,46E-01 |  |
|    |          |     |          |  |





# Fractional Quadratic Problems





Compactness of  ${\mathcal T}$  and strict positivity of p over this set implies that

$$\psi = \min\left\{f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma}{p(\mathbf{x})} : \mathbf{x} \in \mathcal{T}\right\}$$

always has an optimal solution (primal attainability).





Reformulated as a conic optimization problem

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle = b_i \quad i \in \{1, \dots, m\} \\ & X \in \mathcal{K} \end{array}$$

$$\begin{aligned} x \in \mathcal{K} = R_n^+ & \text{if} \quad x \ge 0 \\ X \in \mathcal{K} \text{ (Positive Semidefinite )} & \text{if} \quad y^T X y \ge 0 \\ X \in \mathcal{K} \text{ (Copositive )} & \text{if} \quad y^T X y \ge 0 \ \forall y \ge 0 \\ X \in \mathcal{K} \text{ (D-Copositive )} & \text{if} \quad y^T X y \ge 0 \ \forall y \in D \\ X \in \mathcal{K} \text{ (Completely Positive )} & \text{if} \quad X = Y^T Y, \ Y \ge 0 \end{aligned}$$



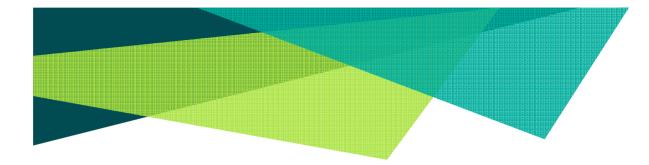
Reformulated as a conic optimization problem

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle = b_i \quad i \in \{1, \dots, m\} \\ & X \in \mathcal{K} \end{array}$$

 $x^T A x \longrightarrow \langle A, x x^T \rangle \longrightarrow \langle A, X \rangle \quad X \in \mathcal{C}_n^* \wedge X \text{ is of rank one} = \mathcal{C}_n^{*rk1}$ 

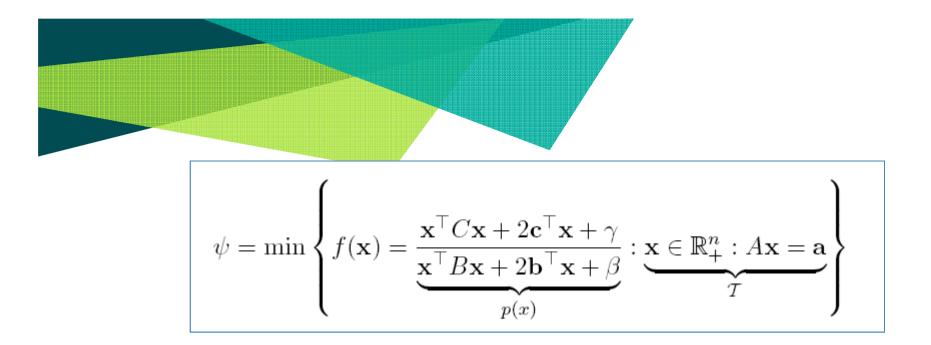
 $\mathcal{C}_n^* = \left\{ D \in \mathcal{M}_n : D = YY^{\mathsf{T}}, Y \text{ an } n \times k \text{ matrix with } Y \ge O \right\}$ 

Relaxation to a more manageable cone – LOWER BOUND



$$\psi = \min \left\{ f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2c^{\top} \mathbf{x} + \gamma}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta} : A \mathbf{x} = \mathbf{a}, \mathbf{x} \in \mathbb{R}^{n}_{+} \right\}$$
$$= \min \left\{ \overline{C} \cdot X : \overline{B} \cdot X = 1, \overline{A} \cdot X = 0, X \in \mathcal{C}^{*}_{n+1} \right\}.$$
cone of completely positive matrices

$$\mathcal{C}_n^* = \left\{ D \in \mathcal{M}_n : D = YY^{\top}, Y \text{ an } n \times k \text{ matrix with } Y \ge O \right\}$$
$$\overline{A} = \left[ \begin{array}{cc} \mathbf{a}^{\top} \mathbf{a} & -\mathbf{a}^{\top} A \\ -A^{\top} \mathbf{a} & A^{\top} A \end{array} \right], \quad \overline{B} = \left[ \begin{array}{cc} \beta & \mathbf{b}^{\top} \\ \mathbf{b} & B \end{array} \right], \quad \overline{C} = \left[ \begin{array}{cc} \gamma & \mathbf{c}^{\top} \\ \mathbf{c} & C \end{array} \right]$$

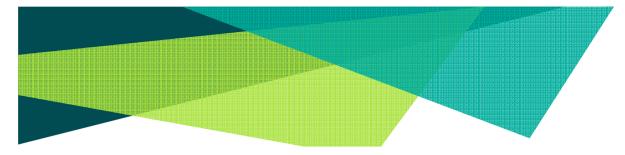


Compactness of  ${\mathcal T}$  and strict positivity of p over this set implies that

$$\psi = \min\left\{f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma}{p(\mathbf{x})} : \mathbf{x} \in \mathcal{T}\right\}$$

always has an optimal solution (primal attainability).





$$\psi = \min\left\{f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma \mathbf{1}}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta \mathbf{1}} : \mathbf{x} \in \mathbb{R}^{n}_{+} : A\mathbf{x} = \mathbf{a}\mathbf{1}\right\}$$

 $z = \left[ \begin{array}{c} 1 \\ \mathbf{x} \end{array} \right]$ 

$$\overline{A} = \begin{bmatrix} \mathbf{a}^{\top}\mathbf{a} & -\mathbf{a}^{\top}A \\ -A^{\top}\mathbf{a} & A^{\top}A \end{bmatrix}, \quad \overline{B} = \begin{bmatrix} \beta & \mathbf{b}^{\top} \\ \mathbf{b} & B \end{bmatrix}, \quad \overline{C} = \begin{bmatrix} \gamma & \mathbf{c}^{\top} \\ \mathbf{c} & C \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{a} \Leftrightarrow [-\mathbf{a}, A]\mathbf{z} = \mathbf{o} \Leftrightarrow \mathbf{z}^{\top}\overline{A}\mathbf{z} = 0$$



$$\psi = \min\left\{f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta} : \mathbf{x} \in \mathbb{R}^{n}_{+} : A\mathbf{x} = \mathbf{a}\right\}$$

$$\overline{A} = \begin{bmatrix} \mathbf{a}^{\top}\mathbf{a} & -\mathbf{a}^{\top}A \\ -A^{\top}\mathbf{a} & A^{\top}A \end{bmatrix}, \quad \overline{B} = \begin{bmatrix} \beta & \mathbf{b}^{\top} \\ \mathbf{b} & B \end{bmatrix}, \quad \overline{C} = \begin{bmatrix} \gamma & \mathbf{c}^{\top} \\ \mathbf{c} & C \end{bmatrix},$$

$$\psi = \min\left\{\frac{\mathbf{z}^{\top}\overline{C}\mathbf{z}}{\mathbf{z}^{\top}\overline{B}\mathbf{z}} : \mathbf{z} \in \mathbb{R}^{n+1}_{+}, \ z_1 = 1, \ \mathbf{z}^{\top}\overline{A}\mathbf{z} = 0\right\}.$$



$$\psi = \min\left\{ f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta} : \underbrace{\mathbf{x} \in \mathbb{R}^{n}_{+} : A \mathbf{x} = \mathbf{a}}_{\mathcal{T}} \right\}$$
$$\psi = \min\left\{ \frac{\mathbf{z}^{\top} \overline{C} \mathbf{z}}{\mathbf{z}^{\top} \overline{B} \mathbf{z}} : \mathbf{z} \in \mathbb{R}^{n+1}_{+}, \ z_{1} = 1, \ \mathbf{z}^{\top} \overline{A} \mathbf{z} = 0 \right\}.$$

$$Z = \mathbf{z}\mathbf{z}^{\top}$$
$$\mathbf{z}^{\top}\overline{A}\mathbf{z} = \overline{A} \cdot Z$$
$$\overline{A}, \text{ psd } Z_{11} = z_1^2 \text{ and } \mathbf{z} \in \mathbb{R}^{n+1}_+$$

$$\psi = \min\left\{\frac{\overline{C} \cdot Z}{\overline{B} \cdot Z} : Z_{11} = 1, \ \overline{A} \cdot Z = 0, \ \operatorname{rank}(Z) = 1, \ Z \in \mathcal{C}_{n+1}^*\right\}$$

$$\psi = \min\left\{\frac{\overline{C} \cdot Z}{\overline{B} \cdot Z} : Z_{11} = 1, \ \overline{A} \cdot Z = 0, \ \operatorname{rank}(Z) = 1, \ Z \in \mathcal{C}_{n+1}^*\right\}$$

$$Z_{11} = 1 \leftarrow Z_{11} > 0$$

$$X = \frac{1}{\overline{B} \cdot Z} Z \in \mathcal{C}_{n+1}^*$$

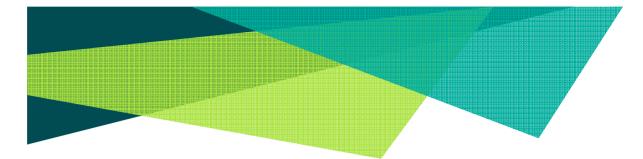
which also has rank one with  $X_{11} > 0$  and satisfies

 $\overline{B} \centerdot X = 1$ 

$$\psi = \min\left\{\overline{C} \cdot X : \overline{B} \cdot X = 1, \overline{A} \cdot X = 0, \operatorname{rank}(X) = 1, X_{11} > 0, X \in \mathcal{C}_{n+1}^*\right\}$$



.



 $\min \{\overline{C} \bullet X : \overline{B} \bullet X = 1, \overline{A} \bullet X = 0, \operatorname{rank}(X) = 1, X_{11} > 0, X \in \mathcal{C}_{n+1}^* \}.$ 

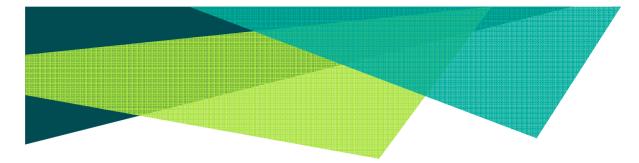
 $\min\left\{\overline{C} \bullet X : \overline{B} \bullet X = 1, \overline{A} \bullet X = 0, X \in \mathcal{C}_{n+1}^*\right\}.$ 

Lemma 2 Under the model assumptions (10),

$$\left\{ X \in \mathcal{C}_{n+1}^* : \overline{B} \bullet X = 1, \overline{A} \bullet X = 0 \right\}$$
  
= conv  $\left\{ \mathbf{z}\mathbf{z}^\top : \mathbf{z} \in \mathbb{R}_+^{n+1} : z_1 > 0, \ \mathbf{z}^\top \overline{B}\mathbf{z} = 1, \ \overline{A}\mathbf{z} = \mathbf{o} \right\}.$ 

$$\begin{aligned}
\mathcal{T} &= \left\{ \mathbf{x} \in \mathbb{R}^{n}_{+} : A\mathbf{x} = \mathbf{a} \right\} \neq \emptyset; \\
\ker A \cap \mathbb{R}^{n}_{+} &= \{\mathbf{o}\} \Longleftrightarrow A\mathbf{y} \neq \mathbf{o} \text{ if } \mathbf{y} \in \mathbb{R}^{n}_{+} \setminus \{\mathbf{o}\}; \\
\overline{B} \text{ is strictly } \Gamma_{\overline{A}} \text{-copositive: } \mathbf{z}^{\top} \overline{B} \mathbf{z} > 0 \text{ if } \overline{A} \mathbf{z} = \mathbf{o}, \ \mathbf{z} \in \mathbb{R}^{n}_{+} \setminus \{\mathbf{o}\}.
\end{aligned}$$
(10)

$$\Gamma_{\overline{A}} = \left\{ \mathbf{z} \in \mathbb{R}^{n+1}_+ : \overline{A}\mathbf{z} = \mathbf{o} \right\}$$

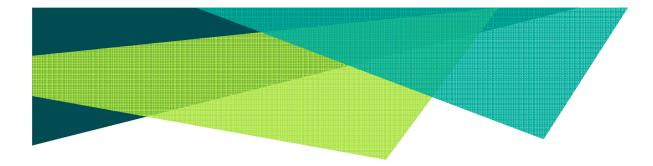


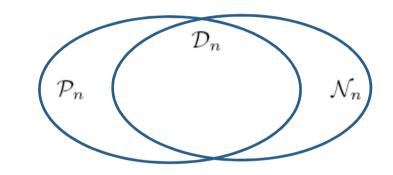
$$\psi = \min \left\{ \overline{C} \bullet X : \overline{B} \bullet X = 1, \overline{A} \bullet X = 0, \operatorname{rank}(X) = 1, X_{11} > 0, X \in \mathcal{C}_{n+1}^* \right\}.$$
(13)

$$\min\left\{\overline{C} \bullet X : \overline{B} \bullet X = 1, \overline{A} \bullet X = 0, X \in \mathcal{C}_{n+1}^*\right\}.$$
(14)

**Theorem 1** Under the model assumptions (10), problems (13) and (14) are equivalent. Moreover, there is always an optimal solution of the form  $Z^* = Z_{11}^* \mathbf{z} \mathbf{z}^\top$  to (14) with  $\mathbf{z}^\top = [1, (\mathbf{x}^*)^\top]$  which encodes in  $\mathbf{x}^* \in \mathcal{T}$  an optimal solution to (4).





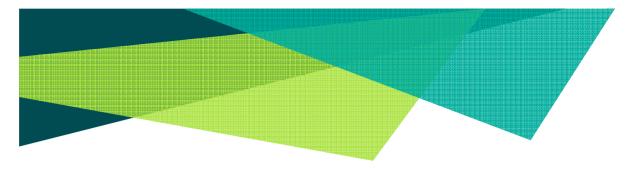


cone of symmetric psd  $n \times n$  matrices cone of nonnegative symmetric matrices

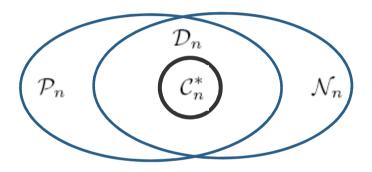
$$\mathcal{P}_n \cap \mathcal{N}_n = \mathcal{D}_n$$

cone of doubly nonnegative matrices





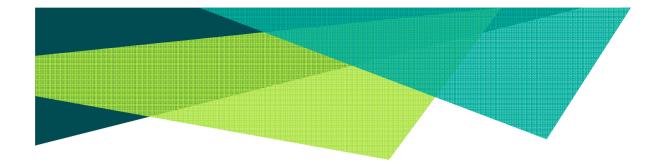
 $\mathcal{C}_n^*$  cone of completely positive matrices



 $\mathcal{P}_n \cap \mathcal{N}_n = \mathcal{D}_n$ 

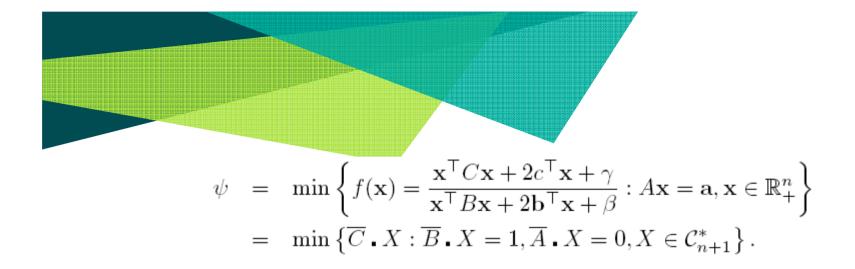
cone of doubly nonnegative matrices





# **Computational Experience**

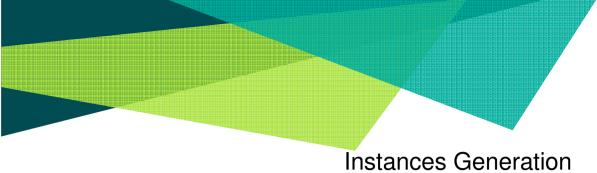




Lower bound

$$\psi_{\rm cop} = \min\left\{\overline{C} \cdot X : \overline{B} \cdot X = 1, \overline{A} \cdot X = 0, X \in \mathcal{D}_{n+1}\right\},\$$





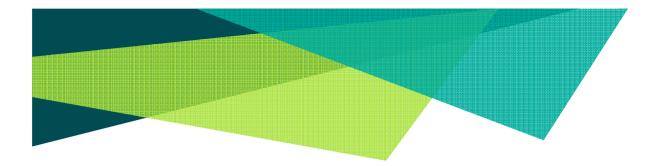
Size n → n= 4,9,49,79

$$\psi = \min \left\{ f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2c^{\top} \mathbf{x} + \gamma}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta} : A\mathbf{x} = \mathbf{a}, \mathbf{x} \in \mathbb{R}^{n}_{+} \right\}$$
$$= \min \left\{ \overline{C} \cdot X : \overline{B} \cdot X = 1, \overline{A} \cdot X = 0, X \in \mathcal{C}^{*}_{n+1} \right\}.$$

Size (n+1,n+1)

$$\psi_{\rm cop} = \min\left\{\overline{C} \cdot X : \overline{B} \cdot X = 1, \overline{A} \cdot X = 0, X \in \mathcal{D}_{n+1}\right\},\$$

SDP size → 5, 10, 50, 80



Compare de LB obtained by the SDP relaxation with:



Generalized Problem of Moments - (rational polynomial optimization problem over a semialgebraic set formulated as linear moment problem )



Global Optimization code - Branch and Reduce Optimization Navigator – LOWER BOUND AT ROOT, Optimal value for GAPS

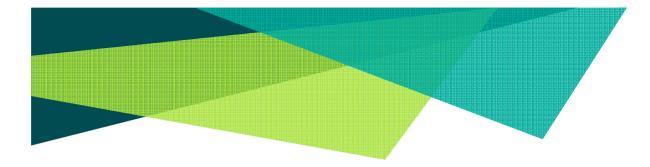
#### Computational experience

|         | GPM (Gloptipoly3)             | Copositive Relaxation         | Copositve Relaxation with<br>Reduction      |  |  |  |
|---------|-------------------------------|-------------------------------|---------------------------------------------|--|--|--|
| ABJ5_0  | eqs m = 210, order n = 98,    | eqs m = 15, order n = 33,     | eqs m = 6, order n = 27,                    |  |  |  |
|         | dim = 2380, blocks = 7        | dim = 53, blocks = 3          | dim = 33, blocks = 3                        |  |  |  |
|         | nnz(A) = 2385 + 0,            | nnz(A) = 55 + 0,              | nnz(A) = 121 + 0,                           |  |  |  |
|         | nnz(ADA) = 44100,             | nnz(ADA) = 225,               | nnz(ADA) = 36,<br>nnz(L) = 21               |  |  |  |
|         | nnz(L) = 22155                | nnz(L) = 120                  |                                             |  |  |  |
|         | Detailed timing (sec)         | Detailed timing (sec)         | Detailed timing (sec)                       |  |  |  |
|         | Pre IPM Post                  | Pre IPM Post                  | Pre IPM Post                                |  |  |  |
|         | 7.001E-03 3.920E-01 2.002E-03 | 5.200E-02 7.001E-02 9.958E-04 | 4.003E-03 3.800E-02 9.958E-04               |  |  |  |
|         |                               |                               |                                             |  |  |  |
| ABJ10_0 | eqs m = 5005, order n = 718,  | eqs m = 55, order n = 113,    | eqs m = 15, order n = 99,                   |  |  |  |
|         | dim = 85638, blocks = 12      | dim = 203, blocks = 3         | dim = 119, blocks = 3<br>nnz(A) = 1291 + 0, |  |  |  |
|         | nnz(A) = 138325 + 0,          | nnz(A) = 210 + 0,             |                                             |  |  |  |
|         | nnz(ADA) = 25050025,          | nnz(ADA) = 3025,              | nnz(ADA) = 225,                             |  |  |  |
|         | nnz(L) = 12527515             | nnz(L) = 1540                 | nnz(L) = 120                                |  |  |  |
|         | Detailed timing (sec)         | Detailed timing (sec)         | Detailed timing (sec)                       |  |  |  |
|         | Pre IPM Post                  | Pre IPM Post                  | Pre IPM Post                                |  |  |  |
|         | 8.460E-01 4.794E+02 2.800E-02 | 6.100E-02 6.500E-02 1.006E-03 | 2.900E-02 5.301E-02 1.992E-03               |  |  |  |



| able 1: ( | Copositiv | ve Relaxa   | tion ver | sus Glo | ptipoly     | $3 \mathrm{an}$ | d baron    |
|-----------|-----------|-------------|----------|---------|-------------|-----------------|------------|
| Instance  | Cop R     | Time1(s)    | Gap      | GPM R   | Time2(s)    | St.             | root B.    |
| ABJ5_0    | -0.7865   | 2.700e-02   | 0.4837   | -0.5275 | 1.045e+00   | 1               | -26.1028   |
| ABJ5_1    | -0.4923   | 3.400e-02   | 1.8293   | -0.5414 | 1.014e + 00 | 1               | -11.8308   |
| ABJ5_2    | -0.7693   | 2.700e-02   | 0.6771   | -0.5089 | 9.672e-01   | 1               | -11.9631   |
| ABJ5_3    | -0.3603   | 2.900e-02   | 0.9907   | -0.2207 | 1.310e + 00 | 1               | -3.9613    |
| ABJ5_4    | -1.2562   | 2.700e-02   | 0.5467   | -0.9428 | 9.984e-01   | 1               | -0.8123    |
| ABJ5_5    | +0.4643   | 3.000e-02   | 0.1552   | +0.2225 | 1.108e + 00 | 1               | -2.2940    |
| ABJ5_6    | -0.5768   | 3.100e-02   | 0.5831   | -0.3671 | 9.828e-01   | 1               | -8.6291    |
| ABJ5_7    | -0.0815   | 3.300e-02   | 15.2108  | -0.0657 | 8.892e-01   | 1               | -5.1034    |
| ABJ5_8    | -0.5946   | 2.600e-02   | 0.4752   | -0.3708 | 9.516e-01   | 1               | -0.4031    |
| ABJ5_9    | -0.8705   | 3.100e-02   | 0.9123   | -0.5753 | 6.708e-01   | 1               | -0.4553    |
| ABJ10_0   | -0.3095   | 3.500e-02   | 0.5090   | -0.1962 | 7.010e+02   | 1               | -23.9325   |
| ABJ10_1   | -0.6779   | 3.100e-02   | 0.4781   | -0.4882 | 5.737e + 02 | 1               | -0.4587    |
| ABJ10_2   | +0.4144   | 3.400e-02   | 0.0533   | +0.4288 | 6.395e + 02 | 1               | -3.4076    |
| ABJ10_3   | -0.3105   | 3.500e-02   | 1.2843   | -0.1840 | 6.298e + 02 | 1               | -12.3357   |
| ABJ10_4   | -0.3885   | 3.900e-02   | 0.4746   | -0.2689 | 5.122e + 02 | 1               | -0.2635    |
| ABJ10_5   | -0.7710   | 4.300e-02   | 0.2028   | -0.6198 | 6.619e + 02 | 1               | -55.5414   |
| ABJ10_6   | -1.2861   | 3.100e-02   | 0.5562   | -0.8749 | 7.123e + 02 | 1               | -0.8265    |
| ABJ10_7   | -0.1154   | 3.900e-02   | 1.1720   | -0.0760 | 6.219e + 02 | 1               | -25.4559   |
| ABJ10_8   | -0.6486   | 3.100e-02   | 0.2828   | -0.4558 | 6.239e + 02 | 1               | -0.5056    |
| ABJ10_9   | -0.3070   | 4.800e-02   | 0.5997   | -0.1794 | 6.183e + 02 | 1               | -0.1919    |
| ABJ50_0   | -0.7435   | 3.238e + 00 | 0.3552   | O of M  | -           |                 | -502.4740  |
| ABJ50_1   | -0.9606   | 2.731e+00   | 0.2229   | O of M  | -           |                 | -0.7856    |
| ABJ50_2   | -0.7844   | 3.192e + 00 | 0.2786   | O of M  | -           |                 | -0.6135    |
| ABJ50_3   | -0.4022   | 2.983e+00   | 0.3630   | O of M  | -           |                 | -1463.1800 |
| ABJ50_4   | -0.2677   | 3.001e+00   | 0.8199   | O of M  | -           |                 | -451.7790  |
| ABJ50_5   | -0.6484   | 2.981e+00   | 0.6369   | O of M  | -           |                 | -0.3962    |
| ABJ50_6   | -0.5760   | 3.498e + 00 | 0.3702   | O of M  | -           |                 | -989.5200  |
| ABJ50_7   | -0.6486   | 2.993e+00   | 0.3201   | O of M  | -           |                 | -0.4914    |
| ABJ50_8   | -0.5985   | 3.221e+00   | 0.3456   | O of M  | -           |                 | -490.0360  |
| ABJ50_9   | -0.3730   | 3.244e + 00 | 0.3215   | O of M  | -           |                 | -626.8870  |
| ABJ80_0   | -0.4427   | 5.049e + 01 | 0.5019   | O of M  | -           |                 | -1394.8500 |
| ABJ80_1   | -0.5806   | 5.532e + 01 | 0.2984   | O of M  | -           |                 | -0.4472    |
| ABJ80_2   | -0.8597   | 5.532e + 01 | 0.2869   | O of M  | -           |                 | -0.6681    |
| ABJ80_3   | -0.4345   | 5.519e + 01 | 0.3302   | O of M  | -           |                 | -1849.5000 |
| ABJ80_4   | -0.8625   | 5.101e + 01 | 0.3214   | O of M  | -           |                 | -0.6528    |
| ABJ80_5   | -0.4670   | 5.117e + 01 | 0.3301   | O of M  | -           |                 | -0.3511    |
| ABJ80_6   | -0.3473   | 5.539e + 01 | 0.6090   | O of M  | -           |                 | -2488.4700 |
| ABJ80_7   | -0.5883   | 5.105e + 01 | 0.3607   | O of M  | -           |                 | -1487.1000 |
| ABJ80_8   | -0.4181   | 5.532e + 01 | 0.5004   | O of M  | -           |                 | -736.0130  |
| ABJ80_9   | -0.7023   | 5.099e + 01 | 0.3568   | O of M  | -           |                 | -0.5177    |

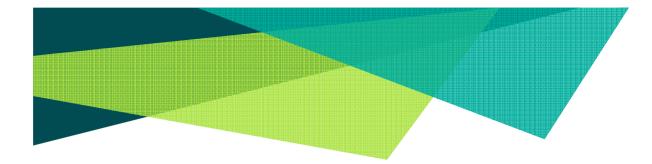
. Т -



#### Linear discriminant problems 8x8

| UB |          | Sol |          | UB |          |
|----|----------|-----|----------|----|----------|
|    | 1,00E+09 |     | 6,17E-02 |    | 6,17E-02 |
|    | 1,00E+09 |     | 1,47E-01 |    | 1,52E-01 |
|    | 1,00E+09 |     | 2,56E-01 |    | 2,60E-01 |
|    | 1,00E+09 |     | 1,53E-01 |    | 1,56E-01 |
|    | 1,00E+09 |     | 1,19E-01 |    | 1,20E-01 |
|    | 1,00E+09 |     | 1,91E-01 |    | 1,91E-01 |
|    | 1,00E+09 |     | 2,24E-01 |    | 2,35E-01 |
|    | 1,00E+09 |     | 2,42E-01 |    | 2,42E-01 |
|    | 1,00E+09 |     | 1,32E-01 |    | 1,32E-01 |
|    | 1,00E+09 |     | 3,46E-01 |    | 3,47E-01 |





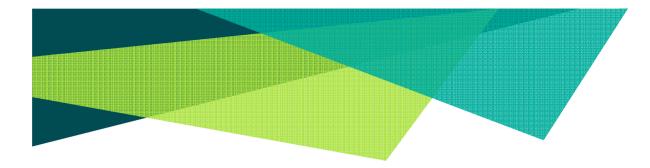
# And minimax fractional problems





- Allows the decision maker to compute the best strategy under the worstcase scenario.
- The solution value will not deteriorate whichever scenario turns out to be the true one.
- The real solution evaluation will be at least as good as the min-max value.
- Applications of single ratio can be directly extended cases where there is some uncertainty related to outside factors.



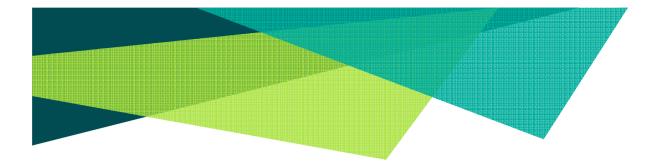


#### **Copositive reformulation**

(MMDFP) 
$$\min_{\mathbf{x}\in\Omega} \max_{i\in I} \frac{\mathbf{x}^{\top} \mathbf{Q}_i \mathbf{x} + 2\mathbf{b}_i^{\top} \mathbf{x} + c_i}{\mathbf{r}_i^{\top} \mathbf{x} + d_i}.$$

$$\Omega = \left\{ \mathbf{x} \in \mathbb{R}^n_+ : \mathsf{A} \mathbf{x} = \mathsf{a} \ , \ \mathbf{x}^\top \mathsf{A}_q \mathbf{x} + \mathsf{a}_q \mathbf{x} + \alpha_q \le 0 \text{ for all } q \in [1 : p] \right\}$$





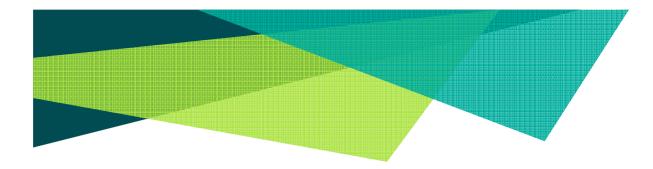
We use a Shor lifting:  $\mathbf{y}^{\top} = \begin{bmatrix} 1 \ \mathbf{x}^{\top} \end{bmatrix}$  and for  $i \in I$  abbreviate by

$$\widehat{h}(\mathbf{y}) = \max_{i \in I} \frac{\mathbf{y}^{\top} \widehat{\mathbf{Q}}_i \mathbf{y}}{\widehat{\mathbf{r}}_i^{\top} \mathbf{y}}$$

with

$$\widehat{\mathsf{Q}}_i = \left[ \begin{array}{cc} c_i & \mathsf{b}_i^\top \\ \mathsf{b}_i & \mathsf{Q}_i \end{array} \right] \quad \text{and} \ \ \widehat{\mathsf{r}}_i = \left[ \begin{array}{c} d_i \\ 2\mathsf{r}_i \end{array} \right].$$





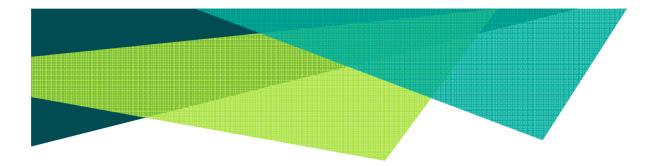
Next we :

$$\mathsf{A}\mathsf{x} = \mathsf{a} \quad \Longleftrightarrow \quad \|\mathsf{A}\mathsf{x} - \mathsf{a}\|^2 \le 0 \quad \Longleftrightarrow \quad \mathsf{y}^\top \widehat{\mathsf{A}_0} \mathsf{y} \le 0 \,,$$

where

$$\widehat{\mathsf{A}_0} = \left[ \begin{array}{rrr} \mathsf{a}^{\top}\mathsf{a} & -\mathsf{a}^{\top}\mathsf{A} \\ -\mathsf{A}^{\top}\mathsf{a} & \mathsf{A}^{\top}\mathsf{A} \end{array} \right] \,.$$





Likewise, homogenize the quadratic constraints by introducing, for all  $q \in [1:p]$ ,

$$\widehat{\mathsf{A}_q} = \left[ \begin{array}{cc} \alpha_q & \mathsf{a}_q^\top \\ \mathsf{a}_q & \mathsf{A}_q \end{array} \right] \,.$$

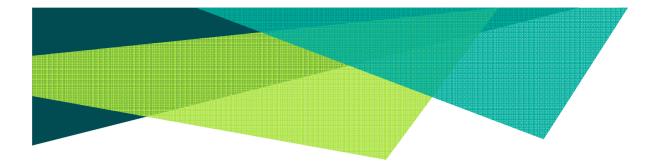
So, denoting

$$\widehat{\Omega} = \left\{ \mathbf{y} \in \mathbb{R}_{+}^{n+1} : y_0 = 1 \,, \, \mathbf{y}^\top \widehat{\mathsf{A}_q} \mathbf{y} \le 0 \text{ for all } q \in [0:p] \right\} \,,$$

we arrive at

$$\lambda^* = \min_{\mathbf{y}\in\widehat{\Omega}}\widehat{h}(\mathbf{y}) = \min_{\mathbf{y}\in\widehat{\Omega}}\max_{i\in I}\frac{\mathbf{y}^{\top}\widehat{\mathbf{Q}}_i\mathbf{y}}{\widehat{\mathbf{r}}_i^{\top}\mathbf{y}}.$$
 (12)

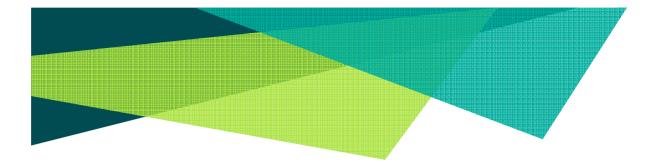




we introduce another variable  $v \in \mathbb{R}$  and obtain

$$\begin{split} \lambda^* &= \min_{\mathbf{y}\in\widehat{\Omega}} \left\{ \max_{i\in I} \frac{\mathbf{y}^\top \widehat{\mathbf{Q}}_i \mathbf{y}}{\widehat{\mathbf{r}}_i^\top \mathbf{y}} \right\} \\ &= \min_{(\mathbf{y},v)\in\widehat{\Omega}\times\mathbb{R}} \left\{ v: \frac{\mathbf{y}^\top \widehat{\mathbf{Q}}_i \mathbf{y}}{\widehat{\mathbf{r}}_i^\top \mathbf{y}} \leq v \text{ for all } i\in I \right\} \\ &= \min_{(\mathbf{y},v)\in\widehat{\Omega}\times\mathbb{R}} \left\{ v: \mathbf{y}^\top \widehat{\mathbf{Q}}_i \mathbf{y} \leq v \widehat{\mathbf{r}}_i^\top \mathbf{y} \text{ for all } i\in I \right\} \,. \end{split}$$



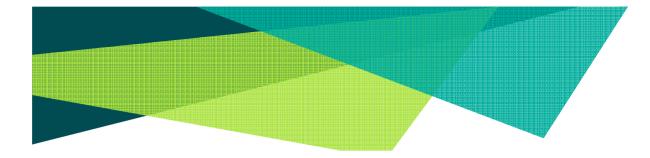


Now considering  $\mathbf{z} = [\mathbf{y}^\top ~ v]^\top$  and

$$\begin{split} \breve{\mathsf{Q}}_i &= \left[ \begin{array}{cc} \widehat{\mathsf{Q}}_i & \mathsf{o} \\ \mathsf{o}^\top & 0 \end{array} \right] & \text{for } i \in I \,, \\ \breve{\mathsf{R}}_i &= \left[ \begin{array}{cc} \mathsf{O} & \frac{1}{2} \widehat{\mathsf{r}}_i \\ \frac{1}{2} \widehat{\mathsf{r}}_i^\top & 0 \end{array} \right] & \text{for } i \in I \,, \\ \breve{\mathsf{A}}_q &= \left[ \begin{array}{cc} \widehat{\mathsf{A}}_q & \mathsf{o} \\ \mathsf{o}^\top & 0 \end{array} \right] & \text{for } q \!\in\! [0\!:\!m] \,, \end{split}$$

we obtain



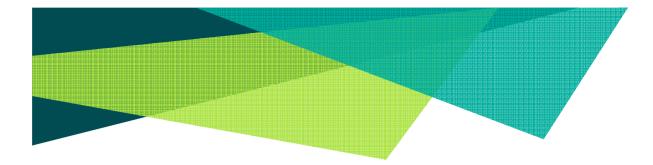


$$\begin{split} \lambda^* &= \\ &= \min_{\mathbf{z} \in \mathbb{R}^{n+1}_+} \left\{ z_{n+1} : z_0 = 1 \,, \, \mathbf{z}^\top \breve{\mathsf{Q}}_i \mathbf{z} \le \mathbf{z}^\top \breve{\mathsf{R}}_i \mathbf{z}, \, i \in I \,, \mathbf{z}^\top \breve{\mathsf{A}}_q \mathbf{z} \le 0 \,, \, q \in [0:p] \right\} . \\ &= \min_{\mathbf{z} \in \mathbb{R}^{n+1}_+} \left\{ z_{n+1} : z_0 = 1 \,, \, \mathbf{z}^\top (\breve{\mathsf{Q}}_i - \breve{\mathsf{R}}_i) \mathbf{z} \le , \, i \in I \,, \mathbf{z}^\top \breve{\mathsf{A}}_q \mathbf{z} \le 0 \,, \, q \in [0:p] \right\} . \\ &\qquad \mathsf{X} = \mathbf{z} \mathbf{z}^\top \,, (z_{n+1}^* \ge 0) \text{ and with } z^\top W z = W \bullet X \end{split}$$

$$\gamma^* = \min_{\mathsf{X} \in \mathcal{C}_{n+2}^{rk_1}} \left\{ X_{n+1,n+1} : X_{00} = 1(\breve{\mathsf{Q}}_i - \breve{\mathsf{R}}_i) \bullet \mathsf{X} \le 0, i \in I, \breve{\mathsf{A}}_q \bullet X \le 0, q \in [0:p] \right\},\$$

where  $\mathcal{C}_{n+2}^{rk1} = \{ \mathsf{X} \in \mathcal{C}_{n+2} : \mathsf{rank} \ \mathsf{X} = 1 \}.$ 





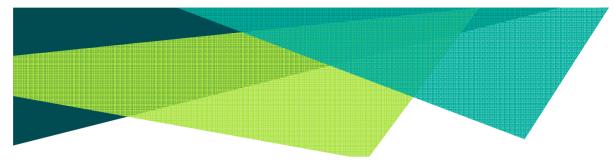
Dropping the rank constraint leads to the copositive relaxation

$$\gamma_{CP}^* = \min_{\mathsf{X} \in \mathcal{C}_{n+2}} \left\{ X_{n+1,n+1} : X_{00} = 1, (\breve{\mathsf{Q}}_i - \breve{\mathsf{R}}_i) \bullet \mathsf{X} \le 0, i \in I, \breve{\mathsf{A}}_q \bullet X \le 0, \right\}$$
$$q \in [0:p]$$

with its dual

$$\gamma_{COP}^* = \sup_{\mathbf{u} \in \mathbb{R}^{m+q+2}_+} \left\{ u_0 : \mathsf{E}_{n+1} - u_0 \mathsf{E}_0 - \sum_{i=1}^m u_i (\breve{\mathsf{Q}}_i - \breve{\mathsf{R}}_i) - \sum_{q=0}^p \mu_q \breve{\mathsf{A}}_q \in \mathcal{C}^*_{n+2} \right\},$$
  
where  $\mathsf{E}_k \bullet \mathsf{X}_k = X_{kk}$ .





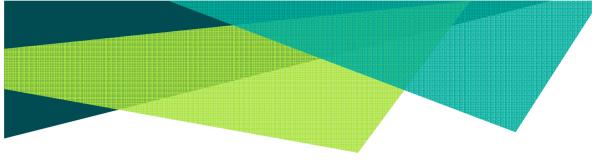
#### Numerical experiments

- PC, Intel(R) Core(TM) i7-2640M, 2.80 Ghz,400 GB RAM.
- Matlab 2013Ra was used to run the global optimization solver BARON

• 
$$\lambda^* = \min\left\{v: \frac{f_i(\mathbf{x})}{g_i(\mathbf{x})} \le v, i \in I, A\mathbf{x} = \mathbf{a}, A_q\mathbf{x} \le a_q, \mathbf{x} \ge 0, v_l \le v \le v_u\right\}$$

- SDPT3(4.0)/Octave,
- interface YALMIP was used to call SDPT3.
- Test instances were randomly generated. m = 3, 5, 10 ratios and  $n \in \{5, 25, 50, 75\}$ .





#### Gap1=100 BARON UB Gap0=100 BARON UB\_YLB BARON UB

Gap2=100 BARON UB\_BARON UB BARON UB

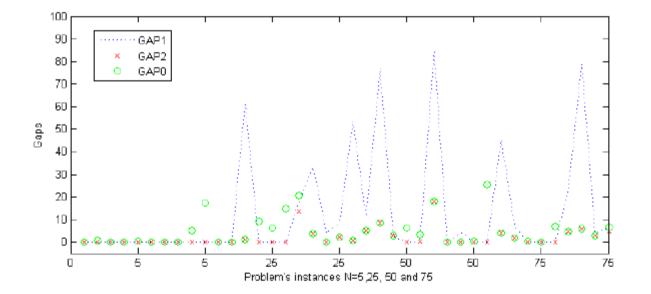
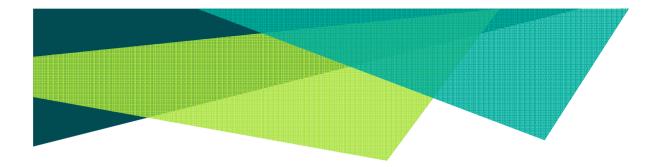


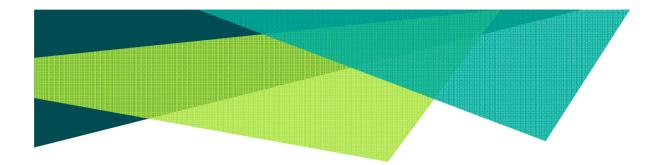
Figure 3: Relative gaps for the m = 5 instances

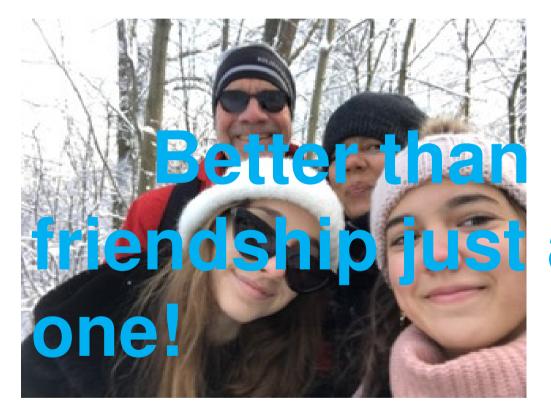




### Conclusions

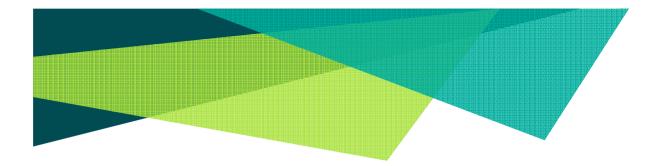






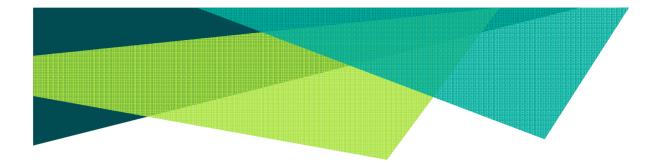
### a positive a copositive





### Future work?





## THANK YOU MANUEL!



