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The data

Classical data analysis :
Data is represented in a n × p matrix
each of n individuals (in row) takes one single value
for each of p variables (in column)

Nb. passengers Delay (min) Airline Aircraft
Flight 1 200 20 Air France Airbus
Flight 2 120 0 Ryanair Boeing
Flight 3 100 10 Lufthansa Airbus
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The data

Symbolic Data Analysis :
to take into account variability inherent to the data

Variability occurs when we have

Descriptors on flights, but: analyse the airline companies - not each
individual flight

Descriptors on prescriptions, but: analyse patients, or doctors - not
the individual prescriptions

Official statistics - Descriptors on citizens, but: analyse the cities,
the regions - not the individual citizens

=⇒ (symbolic) variable values are
sets, intervals

distributions on an underlying set of sub-intervals or categories

Micro-data −→ Macro-data
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The data

Example : Data for three airline companies (e.g. arrival flights)

Airline Nb Passengers Delay (min) Aircraft

A 180 10 Boeing
B 120 0 Boeing
A 200 20 Airbus
C 80 15 Embraer
B 100 5 Embraer
A 300 35 Airbus
C 70 30 Embraer

. . . . . . . . . . . .

↓
Airline Nb. Passengers Delay (min) Aircraft

A [180, 300] {[0, 10[, 0.33; [10, 30[, 0.33; [30, 60], 0.33} {Airbus (2/3), Boeing (1/3)}
B [100, 120] {[0, 10[, 1.0; [10, 30[, 0; [30, 60], 0} {Boeing (1/2), Embraer (1/2)}
C [70, 80] {[0, 10[, 0; [10, 30[, 0.5; [30, 60[, 0.45; [60, 90], 0.05} {Embraer (1)}
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The data

In most common applications, symbolic data arises from the
aggregation of micro data

Often reported as such: temperature min-max intervals , financial
assets daily min-max or open-close values

They also occur directly, in descriptions of concepts : diseases,
biological species (plants, etc.), technical specifications,...

Quantile lists: infant growth, plant measures, etc.

Brito, P. (2014). Symbolic Data Analysis: Another Look at the Interaction of Data Mining and
Statistics. WIREs Data Mining and Knowledge Discovery, 4(4), 281–295.
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Symbolic Variable types

Numerical (Quantitative) variables

Numerical single-valued variables
Numerical multi-valued variables
Interval variables
Distributional variables: Histograms, Quantile lists

Categorical (Qualitative) variables :

Categorical single-valued variables
Categorical multi-valued variables
Distributional variables : Categorical modal - Compositions
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The data

Airline Nb. Passengers Delay (min) Aircraft

A [180, 300] {[0, 10[ , 0.33; [10, 30[ , 0.33; [30, 60], 0.33} {Airbus (2/3), Boeing (1/3)}
B [100, 120] {[0, 10[ , 1.0; [10, 30[ , 0; [30, 60], 0} {Boeing (1/2), Embraer (1/2)}
C [70, 80] {[0, 10[ , 0; [10, 30[ , 0.5; [30, 60[, 0.45; [60, 90], 0.05} {Embraer (1)}

OGDA, Vienna 2018 P. Brito



Variability in Data
Histogram-valued variables

Linear Regression for histogram data
Discriminant Analysis with histogram data

Summary and References

Outline

1 Variability in Data

2 Histogram-valued variables

3 Linear Regression for histogram data

4 Discriminant Analysis with histogram data

5 Summary and References

OGDA, Vienna 2018 P. Brito



Variability in Data
Histogram-valued variables

Linear Regression for histogram data
Discriminant Analysis with histogram data

Summary and References

Histogram-valued variables

Histogram-valued variable : Y : S → B

B : set of probability or frequency distributions over a set of sub-intervals

Y (si ) = (Ii1, pi1; . . . ; Iiki , piKi )

pi` : probability or frequency associated to Ii` = [I i`, I i`[
pi1 + . . .+ piKi = 1

Y (si ) may be represented by the histogram :

HY (si ) = ([I i1, I i1[, pi1; . . . ; [I iKi
, I iKi ], pijKi )
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Histogram data

Y1 . . . Yp

s1 {[I111, I111[, p111; . . . ; [I11K11
, I11K11

], p11K11
} . . . {[I1p1, I1p1[, p1p1; . . . ; [I1pK1p

, I1pK1p
], p1pK1p

}

. . . . . . . . .

si {[I i11, I i11[, pi11; . . . ; [I i1Ki1
, I i1Ki1

], pi1Ki1
} . . . {[I ip1, I ip1[, pip1; . . . ; [I ipKip

, I ipKip
], pipKip

}

. . . . . . . . .

sn {[I n11, I n11[, pn11; . . . ; [I n1Kn1
, I n1Kn1

], pn1Kn1
} . . . {[I np1, I np1[, pnp1; . . . ; [I npKnp

, I npKnp
], pnpKnp

}
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Histogram-valued variables

Assumption : within each sub-interval [I ij`, I i`[ the values of variable
Yj for observation si , are uniformly distributed

For each variable Yj the number and length of sub-intervals in
Yj(si ), i = 1, . . . , n may be different

Interval-valued variables : particular case of histogram-valued
variables: Yj(si ) = [lij , uij ]→ HYj (si ) = ([lij , uij ], 1)
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Histogram-valued variables

Y (si ) can, alternatively, be represented by the inverse cumulative
distribution function - quantile function

Ψ−1 : [0, 1] −→ R

Ψ−1
i (t) =


I i1 + t

wi1
ri1 if 0 ≤ t < wi1

I i2 + t−wi1

wi2−wi1
ri2 if wi1 ≤ t < wi2

...

I ijKi
+

t−wiKi−1

1−wiKi−1
riKi if wiKi−1 ≤ t ≤ 1

where wih =
h∑
`=1

pi`, h = 1, . . . ,Ki ; ri` = I i` − I i`

for ` = {1, . . . ,Ki}.

These are piecewise linear functions.

OGDA, Vienna 2018 P. Brito



Variability in Data
Histogram-valued variables

Linear Regression for histogram data
Discriminant Analysis with histogram data

Summary and References

Histogram-valued variables: Example

Studying the performance of some administrative offices - time people
have to wait before being taken care of:

Office Waiting Times (minutes)
A 5, 10, 15, 17, 20, 20, 25, 30, 30, 32, 35, 40, 40, 45, 50, 50
B 5, 8, 10, 12, 15, 20, 25, 25, 30, 32, 35, 35, 45, 52, 55, 60

Average waiting time : 29.0 minutes for both offices

Description in terms of histograms :

Office Waiting Times (minutes)
A {[0, 15[, 0.125; [15, 30[, 0.3125; [30, 45[, 0.375; [45, 60], 0.1875}
B {[0, 15[, 0.25; [15, 30[, 0.25; [30, 45[, 0.25; [45, 60], 0.25}
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Histogram-valued variables: Example

Histograms :
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Ψ−1(t) =
120t if 0 ≤ t ≤ 0.125
48t + 9 if 0.125 ≤ t ≤ 0.4375
40t + 12.5 if 0.4375 ≤ t ≤ 0.8125
80t − 20 if 0.8125 ≤ t ≤ 1

Ψ−1(t) = 60t for 0 ≤ t ≤ 1
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Histogram-valued variables: Distance measures

Many measures proposed in the literature
(see e.g. Bock and Diday (2000), Gibbs (2002))

Divergency measures

Kullback-Leibler DKL(f , g) =

∫
R
log

(
f (x)

g(x)

)
f (x)dx

Jeffreys DJ (f , g) = DKL(f , g) + DKL(g , f )

χ2 Dχ2 (f , g) =

∫
R

|f (x)− g(x)|2

g(x)
dx

Hellinger DH (f , g) =

[∫
R

(√
f (x)−

√
g(x)

)
dx

] 1
2

Total variation Dvar (f , g) =

∫
R
|f (x)− g(x)|dx

Kolmogorov DK (f , g) = max
R
|F (x)− G(x)|

Wasserstein DW (f , g) =

∫ 1

0

|F−1(t)− G−1(t)|dt

Mallows DM (f , g) =

√∫ 1

0

(F−1(t)− G−1(t))2 dt
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Histogram-valued variables: Distance measures

Wasserstein distance :
DW (Ψ−1

Y (i),Ψ
−1
Y (i ′)) =

∫ 1

0

∣∣∣Ψ−1
Y (i)(t)−Ψ−1

Y (i ′)(t)
∣∣∣ dt

Mallows distance:

DM(Ψ−1
Y (i),Ψ

−1
Y (i ′)) =

√∫ 1

0
(Ψ−1

Y (i)(t)−Ψ−1
Y (i ′)(t))2dt

Under the uniformity hypothesis,
and considering a fixed weight decomposition
(same weights, different intervals),
we have (Irpino and Verde, 2006):

D2
M(Ψ−1

Y (i),Ψ
−1
Y (i ′)) =

=
K∑
`=1

p`

[
(cY (i) − cY (i ′))

2 +
1

3
(rY (i) − rY (i ′))

2

]
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Histogram-valued variables: Distance measures

Squared Euclidean distance

d2
E (Yi ,Yi ′) =

k∑
`=1

(pi` − pi ′`)
2

Differences between weights, fixed partition
(same intervals for all observations)
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Descriptive Statistics for Histogram Variables

Irpino and Verde (2015):
Basic statistics obtained using a metric-based approach

Fréchet Mean :

M = argmin
x

n∑
i=1

wid
2(si , x) Barycenter

Euclidean distance : mean distribution or barycenter is the finite uniform
mixture of the given distributions
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Descriptive Statistics for Histogram Variables: Barycenter

Mallows distance : mean distribution or barycenter obtained from the
mean quantile function

The Mallows barycentric histogram is the solution of the minimization
problem

min
n∑

i=1

D2
M(Ψ−1

Y (i)(t),Ψ−1
Yb

(t))

that is, the quantile function where the centers and half ranges of each
subinterval ` are the classical mean of the centers and half ranges of all
observations

Need to re-write the histograms - and quantile functions - with the same
weight decomposition
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Descriptive Statistics for Histogram Variables: Barycenter

H1 = {[1; 2[; 0.7; [2; 3[; 0.2; [3; 4]; 0.1}
H2 = {[11; 12[; 0.1; [12; 13[; 0.2; [13; 14]; 0.7}

Barycentric histogram:
Hb = {[6; 6.58[; 0.1; [6.58; 7.21[; 0.2;

[7.21; 7.79[; 0.4; [7.79; 8.43[; 0.2[8.43; 9]; 0.1}

Histograms : Quantile functions :
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Histogram-valued variables: Mallows distance properties

Given a partition in k groups, the Mallows distance fulfils the Huygens
theorem decomposition in Between and Within dispersion (Irpino and
Verde, 2006):

n∑
i=1

D2
M(Ψ−1

si (t),Ψ−1
S (t)) =

k∑
h=1

nhD
2
M(Ψ−1

S (t),Ψ−1
Ch

(t))+

+
k∑

h=1

∑
i∈Ch

D2
M(Ψ−1

si (t),Ψ−1
Ch

(t))

where nh is the number of observations in group Ch

Irpino A., Verde R. (2006). A new Wasserstein based distance for the hierarchical clustering of
histogram symbolic data. Data Science and Classification, Proc. IFCS 2006. Springer, 185-192
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First linear regression models

First linear regression method for histogram-valued data due to
Billard and Diday (2006)

Model based on the - real-valued - first and second-order moments
for histogram-valued variables obtained previously
From these, the regression coefficients are derived

Irpino and Verde (2008) developed a linear regression model

Minimizing the Mallows’s distance between the observed and the
derived quantile functions of the dependent variable
The method relies on the exploitation of the properties of a
decomposition of the Mallows’s distance
Used to measure the sum of squared errors and rewrite the model
Splitting the contribution of the predictors in a part depending on
the averages of the distributions and another depending on the
centered quantile distributions
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Distribution and Symmetric Distribution Linear Regression
model
Joint work with Sónia Dias (IPVC & INESC TEC)

Dias and Brito (2015) propose a new Linear Regression model for
histogram-valued variables

Distributions are represented by their quantile functions

The model includes both the quantile functions that represent the
distributions that the independent histogram-valued variables take,
and the quantile functions that represent the distributions that the
respective symmetric histogram-valued variables take - two terms
per independent variable
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Linear combination of quantile functions

The linear combination of quantile functions is not defined as:

Ψ−1
Y (i)(t) = a1Ψ−1

X1(i)(t) + a2Ψ−1
X2(i)(t) + . . .+ apΨ−1

Xp(i)(t)

Because when we multiply a quantile function by a negative number we
do not obtain a non-decreasing function

If non-negativity constraints are imposed on the parameters aj ,
j ∈ {1, 2, . . . , p} a quantile function is always obtained.
However, this solution forces a direct linear relation between Ψ−1

Y (i)(t) and

Ψ−1
Xj (i)

(t)

Dias and Brito (2015) proposed a definition for linear combination of
quantile functions that solves the problem of the semi-linearity of the
space of the quantile functions

Dias, S. and Brito, P. (2015), Linear Regression Model with Histogram-Valued Variables.
Statistical Analysis and Data Mining, 8(2),75-113
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Definition of linear combination

To allow for a direct and an inverse linear relation between the quantile
functions, the linear combination includes:

Ψ−1
Xj

(t) that represents the distributions of the histogram-valued variables

Xj

−Ψ−1
Xj

(1− t) the quantile function that represents the respective

symmetric histograms.

Linear combination between quantile functions

The quantile function Ψ−1
Y may be expressed as a linear combination of Ψ−1

Xj
(t)

and −Ψ−1
Xj

(1− t) as follows:

Ψ−1
Y (t) =

p∑
j=1

ajΨ
−1
Xj

(t)−
p∑

j=1

bjΨ
−1
Xj

(1− t) + γ

with t ∈ [0, 1] ; aj , bj ≥ 0, j ∈ {1, 2, . . . , p} .
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Distribution and Symmetric Distribution Linear Regression
model

Non-negativity restrictions on the parameters do not imply a direct
linear relationship

Uses the Mallows distance to quantify the error

Determination of the model requires solving a quadratic optimization
problem, subject to non-negativity constraints on the unknowns
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Distribution and Symmetric Distribution Linear Regression
model

The parameters of the model are an optimal solution of the minimization
problem:

Minimize SE =
n∑

i=1

D2
M(Ψ−1

Y (i),Ψ
−1

Ŷ (i)
)

with aj , bj ≥ 0, j = {1, 2, . . . , p} and γ ∈ R

−→ Kuhn Tucker optimality conditions allow defining a measure to
evaluate the quality of fit of the model (determination coefficient), Ω
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Distribution and Symmetric Distribution Linear Regression
model

Experiments, both with small real data sets and simulated data: the
model works well

The goodness-of-fit measure shows good behaviour

Alternative version of the model has been developed:

The constant term is itself a distribution (not a real number)

Allows for a better interpretation of the obtained model coefficients

Models studied for the special case of interval-valued variables, with
extension to triangular distributions within intervals:

Dias, S. and Brito, P. (2017). Off the Beaten Track: A New Linear Model for Interval Data.
European Journal of Operational Research, 258(3), 1118–1130.
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Distributional Data : Crimes in USA regression model

Original data: Socio-economic data from the ’90 Census Crime data from
1995

First level units: Cities of the USA states

Original variables:

Response variable: Y = (Log) total number of violent crimes per
100 000 habitants (LVC)

Four explicative variables:

X1 = percentage of people aged 25 and over with less than 9th
grade education
X2 = percentage of people aged 16 and over who are employed
X3 = percentage of population who are divorced
X4 = percentage of immigrants who immigrated within the last 10
years
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Distributional Data : Crimes in USA regression model

Contemporary aggregation per state →
Higher level units: USA states; 20 states considered

Observations associated to each unit:
The distributions of the records of the cities of the respective state

Response histogram-valued variable LVC :
distributions of the log of the number of violent crimes for each state
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Distributional Data : Crimes in USA regression model

Model DSD I:

Ψ−1

L̂VC(j)
(t) = 3.9321 + 0.0009Ψ−1

X1(j)(t)− 0.0123Ψ−1
X2(j)(1− t) +

+0.2073Ψ−1
X3(j)(t)− 0.0353Ψ−1

X3(j)(1− t) + 0.0187Ψ−1
X4(j)(t); t ∈ [0, 1]

Goodness-of-fit measure : Ω = 0.87

X1, X3 and X4 : direct influence in the logarithm of the number of
violent crimes
X2 (percentage of employed people) : opposite effect
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Distributional Data : Crimes in USA regression model

HLVC (AR) = {[4.2250, 5.3158), 0.2; [5.3158, 5.8887), 0.2; [5.8887, 6.4802), 0.2;

[6.4802, 7.0509), 0.2; [7.0509, 7.7913], 0.2}

OGDA, Vienna 2018 P. Brito
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Linear Discriminant Analysis
Joint work with Sónia Dias (IPVC & INESC TEC) & Paula Amaral (NOVA Univ. of

Lisbon)

Let S be partitioned in k groups, Gh, h = 1, . . . , k .

A linear discriminant function is a linear combination of the explicative
variables :

Ψ−1
D(i)(t) =

p∑
j=1

aj(Ψ−1
Xj (i)

(t)−Ψ−1
Xj

(t))+

+
p∑

j=1

bj(−Ψ−1
Xj (i)

(1− t) + Ψ−1
Xj

(1− t)) with aj , bj ≥ 0

Alternatively: Ψ−1
D(i)(t) = Ψ−1

S(i)(t)−Ψ−1
S (t) where

Ψ−1
S(i)(t) =

p∑
j=1

ajΨ
−1
Xj (i)

(t)− bjΨ
−1
Xj (i)

(1− t)

Ψ−1
S (t) =

p∑
j=1

ajΨ
−1
Xj

(t)− bjΨ
−1
Xj

(1− t) , aj , bj ≥ 0

OGDA, Vienna 2018 P. Brito
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Discriminant Function

Classical Model

Discriminant Function

S(i) =

p∑
j=1

γjxj (i)

The weight vector γ is obtained such that:

the ratio of the variability between groups
relatively to the variability within groups
is maximized

λ =
γ′Bγ

γ′Wγ

where
B - matrix of the sum of the squares
between-groups
W - matrix of the sum of the squares
within-groups

Symbolic Model

Discriminant Function

Ψ−1
S(i)(t) =

p∑
j=1

ajΨ
−1
Xj (i)(t)−

p∑
j=1

bjΨ
−1
Xj (i)(1− t)

with aj , bj ≥ 0.

The weight vector γ ≥ 0 is obtained such that:

the ratio of the variability between groups
relatively to the variability within groups
is maximized

λ =
γ′Bγ

γ′Wγ

The evaluation of the variability between
scores is based on the Mallows distance

OGDA, Vienna 2018 P. Brito
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Discriminant Function

Classical Model

Decomposition of the matrix of the Sums
of Squares and Cross-Products (SSCP):

T = B + W

B - matrix of the sum of squares and
cross-products between-groups
W - matrix of the sum of squares and
cross-products within-groups

Consequently:

γ′Tγ = γ′(B + W)γ = γ′Bγ + γ′Wγ

γ′Tγ =
n∑

i=1

d2(S(i), S)

with S(i) =
p∑

j=1

γjxj (i) and S = 1
n

n∑
i=1

S(i)

Symbolic Model
Sum of the squares of the Mallows

distance between Ψ−1
S(i)

(t) and Ψ−1
S (t),

n∑
i=1

D2
M (Ψ−1

S(i)(t),Ψ−1
S (t)) = γ

′Tγ

According to the Huygens theorem :
n∑

i=1

D2
M (Ψ−1

S(i)
(t),Ψ−1

S (t)) =

k∑
h=1

|Gh|D2
M (Ψ−1

S (t),Ψ−1
Sh

(t))+

+
k∑

h=1

∑
i∈Gh

D2
M (Ψ−1

S(i)
(t),Ψ−1

Sh
(t))

with Ψ
−1
Sh

(t) =
p∑

j=1

[
aj Ψ
−1
Xjh

(t) − bj Ψ
−1
Xjh

(1 − t)

]

In matricial notation:

γ′Tγ = γ′Bγ + γ′Wγ

T, B, W are m ×m matrices, m = 2p.
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Discriminant Function

Classical Model

Optimization problem:

Maximize the ratio

λ =
γ′Bγ

γ′Wγ

Goal: Estimate vector γ such that the
variability of the scores is maximal between
groups and minimal within groups.

Complexity of the optimization problem:
- Easy to find the optimal solution

Symbolic Model

Optimization problem:

Maximize the ratio

λ =
γ′Bγ

γ′Wγ

subject to γ ≥ 0

Optimization of rational quadratic
functions

Hard optimization problem

Nonconvex

Easy to find a good solution

Difficult to prove optimality

Global optimal certificate of solution
provided by BARON was only
possible using a copositive relaxation
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Conic Optimization

Optimization problem of the discriminant method:

ϕ = max
{
f (x) = x′Bx

x′Wx : x ∈ Rm
+

}
= max {B · X : W · X = 1,X ∈ C∗m}

where C∗m is a cone of completely positive matrices, i.e. X = YY ′ with Y
an m × k matrix with Y ≥ 0.

P. Amaral, I. Bomze, J. Júdice (2014). Copositivity and constrained fractional quadratic problems.
Mathematical Programming 146, 325-350.
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Conic Optimization

In general working with C∗m is difficult

Usually, what is done is to work in a relaxation of this problem, replacing
C∗m, by the cone of doubly nonnegative matrices Dm

ϕ = max {B · X : W · X = 1,X ∈ C∗m}

θ = max {B · X : W · X = 1,X ∈ Dm}

In general ϕ ≤ θ. However, if m ≤ 4 then ϕ = θ.
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Classification in two groups

Classification in two groups using the Mallows Distance

Considering two groups: C1, C2, an observation i and the respective

quantile functions: Ψ−1
DC1

(t), Ψ−1
DC2

(t) and Ψ−1
D(i)(t)

The observation i is assigned to Group C1 if

D2
M

(
Ψ−1

D(i)(t),Ψ−1
DG1

(t)
)
< D2

M

(
Ψ−1

D(i)(t),Ψ−1
DG2

(t)
)

The observation i is assigned to Group C2 if

D2
M

(
Ψ−1

D(i)(t),Ψ−1
DG2

(t)
)
< D2

M

(
Ψ−1

D(i)(t),Ψ−1
DG1

(t)
)

An observation i is assigned to the group for which the Mallows distance
between its score and the score of the corresponding barycentric
histogram is minimum.
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USA 96 elections: Democrat/Republican state

Histogram-valued variables:
Pov: percentage of people under the poverty level;
Div: percentage of population who are divorced

Only the states for which the number of records for all selected
variables is higher than thirty, i.e. twenty states are considered.

For all observations the subintervals of each histogram have the
same weight (equiprobable) with frequency 0.20.

Groups:
Group 1 - Democrat: 12 States
Group 2 - Republican: 8 States
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USA 96 elections: Democrat/Republican state

Discriminant function:

Ψ−1
D(i)(t) = 13.76Ψ−1

Pov(i)(1− t) + 7.91Ψ−1
Div(i)(t) + Ψ−1

S (t)

Parameters: Conic optimization - Optimal solution

Classification results: 80% well classified.
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Concluding remarks

From micro-data to macro-data:
Interval and Distribution-valued data

Take variability into account

Several methodologies already developed
for multivariate data analysis

Histogram data : methods based on the Mallows distance between
quantile functions

New problems / challenges :
distributions are not real numbers !
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Concluding remarks

“Distributions are the numbers of the future”

(Berthold Schweizer, 1984)
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Books and Main Papers

Books:

Bock, H.-H., Diday, E. (2000): Analysis of Symbolic Data: Exploratory methods
for extracting statistical information from complex data. Springer.

Billard, L., Diday, E. (2007): Symbolic Data Analysis: Conceptual Statistics and
Data Mining. Wiley.

Diday, E., Noirhomme-Fraiture, M. (2008): Symbolic Data Analysis and the

SODAS Software. Wiley.

Survey Papers:

Billard, L., Diday, E. (2003). From the statistics of data to the statistics of
knowledge: Symbolic Data Analysis. JASA, 98 (462), 470–487.

Noirhomme-Fraiture, M., Brito, P. (2011). Far beyond the classical data models:
Symbolic data analysis. Statistical Analysis and Data Mining, 4(2), 157–170.

Brito, P. (2014). Symbolic Data Analysis: another look at the interaction of
Data Mining and Statistics. WIREs Data Mining and Knowledge Discovery, 4
(4), 281–295.
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