Linear Models for Complex Data Analysis

Paula Brito

FEP & LIAAD - INESC TEC, Universidade do Porto, Portugal

Joint work with Sónia Dias and Paula Amaral

Optimization, Game Theory, and Data Analysis December 20-21, 2018, University of Vienna, Austria

The starting point

8th Workshop of the Working Group "Matrix Computations and Statistics" a satellite meeting of COMPSTAT 2006 Salerno, Italy, 2-3 September 2006

Outline

- 2 Histogram-valued variables
- Iinear Regression for histogram data
- Discriminant Analysis with histogram data

★ Ξ ► < Ξ ►</p>

Variability in Data

Outline

- Inear Regression for histogram data
- Discriminant Analysis with histogram data

The data

Classical data analysis :

Data is represented in a $n \times p$ matrix each of *n* individuals (in row) takes one single value for each of *p* variables (in column)

	Nb. passengers	Delay (min)	Airline	Aircraft
Flight 1	200	20	Air France	Airbus
Flight 2	120	0	Ryanair	Boeing
Flight 3	100	10	Lufthansa	Airbus

化压力

The data

Symbolic Data Analysis :

to take into account variability inherent to the data

Variability occurs when we have

- Descriptors on flights, but: analyse the airline companies not each individual flight
- Descriptors on prescriptions, but: analyse patients, or doctors not the individual prescriptions
- Official statistics Descriptors on citizens, but: analyse the cities, the regions not the individual citizens
- \implies (symbolic) variable values are

sets, intervals

distributions on an underlying set of sub-intervals or categories

$\textbf{Micro-data} \longrightarrow \textbf{Macro-data}$

Variability in Data

The data

Example : Data for three airline companies (e.g. arrival flights)

Airline	Nb Passengers	Delay (min)	Aircraft
A	180	10	Boeing
В	120	0	Boeing
A	200	20	Airbus
С	80	15	Embraer
В	100	5	Embraer
A	300	35	Airbus
С	70	30	Embraer

Airline	Nb. Passengers	Delay (min)	Aircraft
A	[180, 300]	{[0, 10[, 0.33; [10, 30[, 0.33; [30, 60], 0.33]	{Airbus (2/3), Boeing (1/3)}
В	[100, 120]	{[0, 10[, 1.0; [10, 30[, 0; [30, 60], 0}	{Boeing (1/2), Embraer (1/2)}
С	[70, 80]	$\{[0, 10[, 0; [10, 30[, 0.5; [30, 60[, 0.45; [60, 90], 0.05]$	{ Embraer (1) }

イロト イポト イヨト イヨト

э

The data

- In most common applications, symbolic data arises from the aggregation of micro data
- Often reported as such: temperature min-max intervals , financial assets daily min-max or open-close values
- They also occur directly, in descriptions of concepts : diseases, biological species (plants, etc.), technical specifications,...
- Quantile lists: infant growth, plant measures, etc.

Brito, P. (2014). Symbolic Data Analysis: Another Look at the Interaction of Data Mining and Statistics. *WIREs Data Mining and Knowledge Discovery*, 4(4), 281–295.

Symbolic Variable types

- Numerical (Quantitative) variables
 - Numerical single-valued variables
 - Numerical multi-valued variables
 - Interval variables
 - Distributional variables: Histograms, Quantile lists
- Categorical (Qualitative) variables :
 - Categorical single-valued variables
 - Categorical multi-valued variables
 - Distributional variables : Categorical modal Compositions

Variability in Data

Histogram-valued variables Linear Regression for histogram data Discriminant Analysis with histogram data Summary and References

The data

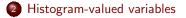
Airline	Nb. Passengers	Delay (min)	Aircraft
A	[180, 300]	{[0, 10[, 0.33; [10, 30[, 0.33; [30, 60], 0.33]	{Airbus (2/3), Boeing (1/3)}
В	[100, 120]	{[0, 10[, 1.0; [10, 30[, 0; [30, 60], 0}	{Boeing (1/2), Embraer (1/2)}
С	[70, 80]	$\{[0, 10[, 0; [10, 30[, 0.5; [30, 60[, 0.45; [60, 90], 0.05]$	{Embraer (1)}

イロト イヨト イヨト イヨト

æ

Histogram-valued variables

Outline



- Inear Regression for histogram data
- Discriminant Analysis with histogram data

Histogram-valued variables

Histogram-valued variable : $Y : S \rightarrow B$

B : set of probability or frequency distributions over a set of sub-intervals

$$Y(s_i) = (I_{i1}, p_{i1}; ...; I_{ik_i}, p_{iK_i})$$

 $p_{i\ell}$: probability or frequency associated to $I_{i\ell} = [\underline{I}_{i\ell}, \overline{I}_{i\ell}]$ $p_{i1} + \ldots + p_{iK_i} = 1$

 $Y(s_i)$ may be represented by the histogram :

$$H_{\mathbf{Y}(s_i)} = ([\underline{I}_{i1}, \overline{I}_{i1}], p_{i1}; \ldots; [\underline{I}_{iK_i}, \overline{I}_{iK_i}], p_{ijK_i})$$

Histogram data

	Y ₁	 Yp
^s 1	$\{[\underline{l}_{111}, \overline{l}_{111}[, p_{111}; \dots; [\underline{l}_{11K_{11}}, \overline{l}_{11K_{11}}], p_{11K_{11}}\}$	 $\{[\underline{l}_{1\rho1}, \overline{l}_{1\rho1}[, p_{1\rho1}; \dots; [\underline{l}_{1\rhoK_{1\rho}}, \overline{l}_{1\rhoK_{1\rho}}], p_{1\rhoK_{1\rho}}\}$
s _i	$\{[\underline{l}_{i11}, \overline{l}_{i11}[, p_{i11}; \dots; [\underline{l}_{i1K_{i1}}, \overline{l}_{i1K_{i1}}], p_{i1K_{i1}}\}$	 $\{[\underline{L}_{ip1}, \overline{I}_{ip1}[, P_{ip1}; \dots; [\underline{L}_{ipK_{ip}}, \overline{I}_{ipK_{ip}}], P_{ipK_{ip}}\}\}$
s _n	$\{[\underline{l}_{n11}, \overline{l}_{n11}], p_{n11}; \dots; [\underline{l}_{n1K_{n1}}, \overline{l}_{n1K_{n1}}], p_{n1K_{n1}}\}$	 $\{[\underline{l}_{np1}, \overline{l}_{np1}], p_{np1}; \dots; [\underline{l}_{npK_{np}}, \overline{l}_{npK_{np}}], p_{npK_{np}}\}$

イロト イヨト イヨト イヨト

æ

Histogram-valued variables

- Assumption : within each sub-interval $[\underline{I}_{ij\ell}, \overline{I}_{i\ell}]$ the values of variable Y_j for observation s_i , are uniformly distributed
- For each variable Y_j the number and length of sub-intervals in $Y_j(s_i)$, i = 1, ..., n may be different
- Interval-valued variables : particular case of histogram-valued variables: $Y_j(s_i) = [I_{ij}, u_{ij}] \rightarrow H_{Y_j(s_i)} = ([I_{ij}, u_{ij}], 1)$

Histogram-valued variables

 $Y(s_i)$ can, alternatively, be represented by the inverse cumulative distribution function - quantile function

$$\begin{split} \Psi^{-1} : [0,1] &\longrightarrow \mathbb{R} \\ \Psi_{i}^{-1}(t) = \begin{cases} \frac{I_{i1} + \frac{t}{w_{i1}} r_{i1} \text{ if } 0 \leq t < w_{i1}}{I_{i2} + \frac{t - w_{i1}}{w_{i2} - w_{i1}} r_{i2} \text{ if } w_{i1} \leq t < w_{i2}} \\ \vdots \\ I_{ijK_{i}} + \frac{t - w_{iK_{i}-1}}{1 - w_{iK_{i}-1}} r_{iK_{i}} \text{ if } w_{iK_{i}-1} \leq t \leq 1 \end{cases} \\ \end{split}$$
where
$$w_{ih} = \sum_{\ell=1}^{h} p_{i\ell}, h = 1, \dots, K_{i}; r_{i\ell} = \overline{I}_{i\ell} - \underline{I}_{i\ell} \end{cases}$$

for $\ell = \{1, \dots, K_i\}$. These are piecewise linear functions.

Histogram-valued variables: Example

Studying the performance of some administrative offices - time people have to wait before being taken care of:

Office	Waiting Times (minutes)
A	5, 10, 15, 17, 20, 20, 25, 30, 30, 32, 35, 40, 40, 45, 50, 50
В	5, 8, 10, 12, 15, 20, 25, 25, 30, 32, 35, 35, 45, 52, 55, 60

Average waiting time : 29.0 minutes for both offices

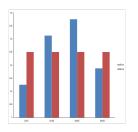
Description in terms of histograms :

Office	Waiting Times (minutes)
A	$\{[0, 15[, 0.125; [15, 30[, 0.3125; [30, 45[, 0.375; [45, 60], 0.1875]$
В	$\{[0, 15[, 0.25; [15, 30[, 0.25; [30, 45[, 0.25; [45, 60], 0.25]$

Histogram-valued variables

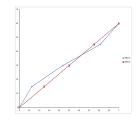
Histogram-valued variables: Example

Histograms :



 $\Psi^{-1}(t) =$ $\begin{array}{ll} 120t & \text{if } 0 \leq t \leq 0.125 \\ 48t+9 & \text{if } 0.125 \leq t \leq 0.4375 \\ 40t+12.5 & \text{if } 0.4375 \leq t \leq 0.8125 \\ 80t-20 & \text{if } 0.8125 \leq t \leq 1 \end{array}$

Quantile functions :



イロト イポト イヨト イヨト

э

 $\Psi^{-1}(t) = 60t$ for 0 < t < 1

Histogram-valued variables: Distance measures

Many measures proposed in the literature (see e.g. Bock and Diday (2000), Gibbs (2002))

Divergency measures	
Kullback-Leibler	$D_{\mathcal{KL}}(f,g) = \int_{\mathbb{R}} \log\left(rac{f(x)}{g(x)} ight) f(x) dx$
Jeffreys	$D_J(f,g) = D_{KL}(f,g) + D_{KL}(g,f)$
χ^2	$D_{\chi^2}(f,g) = \int_{\mathbb{R}} \frac{ f(x) - g(x) ^2}{g(x)} dx$
Hellinger	$D_{H}(f,g) = \left[\int_{\mathbb{R}} \left(\sqrt{f(x)} - \sqrt{g(x)}\right) dx\right]^{\frac{1}{2}}$
Total variation	$D_{var}(f,g) = \int_{\mathbb{R}} f(x) - g(x) dx$ $D_{K}(f,g) = \max_{\mathbb{D}} F(x) - G(x) $
Kolmogorov	$D_{K}(f,g) = \max_{\mathbb{R}}^{J \otimes \mathbb{R}} F(x) - G(x) $
Wasserstein	$D_W(f,g) = \int_0^1 F^{-1}(t) - G^{-1}(t) dt$
Mallows	$D_M(f,g) = \sqrt{\int_0^1 (F^{-1}(t) - G^{-1}(t))^2 dt}$

Histogram-valued variables: Distance measures

• Wasserstein distance :

$$D_{W}(\Psi_{Y(i)}^{-1}, \Psi_{Y(i')}^{-1}) = \int_{0}^{1} \left| \Psi_{Y(i)}^{-1}(t) - \Psi_{Y(i')}^{-1}(t) \right| dt$$

• Mallows distance: $D_M(\Psi_{Y(i)}^{-1}, \Psi_{Y(i')}^{-1}) = \sqrt{\int_0^1 (\Psi_{Y(i)}^{-1}(t) - \Psi_{Y(i')}^{-1}(t))^2 dt}$

Under the uniformity hypothesis, and considering a fixed weight decomposition (same weights, different intervals), we have (Irpino and Verde, 2006):

$$D_{\mathcal{M}}^{2}(\Psi_{Y(i)}^{-1},\Psi_{Y(i')}^{-1}) = \sum_{\ell=1}^{K} p_{\ell} \left[(c_{Y(i)} - c_{Y(i')})^{2} + \frac{1}{3} (r_{Y(i)} - r_{Y(i')})^{2} \right]$$

Histogram-valued variables: Distance measures

• Squared Euclidean distance

$$d_E^2(Y_i, Y_{i'}) = \sum_{\ell=1}^k (p_{i\ell} - p_{i'\ell})^2$$

Differences between weights, fixed partition (same intervals for all observations)

< □ > < 向

글 🕨 🔺 글 🕨

Descriptive Statistics for Histogram Variables

Irpino and Verde (2015): Basic statistics obtained using a metric-based approach

Fréchet Mean :

$$M = \underset{x}{\operatorname{argmin}} \sum_{i=1}^{n} w_i d^2(s_i, x)$$
 Barycenter

Euclidean distance : mean distribution or barycenter is the finite uniform mixture of the given distributions

Descriptive Statistics for Histogram Variables: Barycenter

Mallows distance : mean distribution or barycenter obtained from the mean quantile function $% \left({{{\left[{{{\rm{m}}} \right]}_{{\rm{m}}}}_{{\rm{m}}}} \right)$

The Mallows **barycentric histogram** is the solution of the minimization problem

$$\min \quad \sum_{i=1}^{n} D_{M}^{2}(\Psi_{Y(i)}^{-1}(t), \Psi_{Y_{b}}^{-1}(t))$$

that is, the quantile function where the centers and half ranges of each subinterval ℓ are the classical mean of the centers and half ranges of all observations

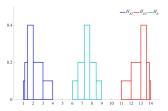
Need to re-write the histograms - and quantile functions - with the same weight decomposition

Descriptive Statistics for Histogram Variables: Barycenter

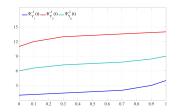
$$\begin{split} H_1 &= \{ [1;2[;0.7;[2;3[;0.2;[3;4];0.1] \\ H_2 &= \{ [11;12[;0.1;[12;13[;0.2;[13;14];0.7] \} \end{split}$$

Barycentric histogram: $H_b = \{ [6; 6.58]; 0.1; [6.58; 7.21]; 0.2;$ $[7.21; 7.79]; 0.4; [7.79; 8.43]; 0.2[8.43; 9]; 0.1 \}$

Histograms :



Quantile functions :



< ロ > < 同 > < 三 > < 三 >

Histogram-valued variables: Mallows distance properties

Given a partition in k groups, the Mallows distance fulfils the Huygens theorem decomposition in Between and Within dispersion (Irpino and Verde, 2006):

$$\sum_{i=1}^{n} D_{M}^{2}(\Psi_{s_{i}}^{-1}(t), \overline{\Psi_{S}^{-1}}(t)) = \sum_{h=1}^{k} n_{h} D_{M}^{2}(\overline{\Psi_{S}^{-1}}(t), \overline{\Psi_{C_{h}}^{-1}}(t)) + \sum_{h=1}^{k} \sum_{i \in C_{h}} D_{M}^{2}(\Psi_{s_{i}}^{-1}(t), \overline{\Psi_{C_{h}}^{-1}}(t))$$

where n_h is the number of observations in group C_h

Irpino A., Verde R. (2006). A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data. *Data Science and Classification, Proc. IFCS 2006.* Springer, 185-192

Linear Regression for histogram data

Outline

Variability in Data

- 3 Linear Regression for histogram data
- Discriminant Analysis with histogram data

Linear Regression for histogram data

First linear regression models

- First linear regression method for histogram-valued data due to Billard and Diday (2006)
 - Model based on the real-valued first and second-order moments for histogram-valued variables obtained previously
 - From these, the regression coefficients are derived
- Irpino and Verde (2008) developed a linear regression model
 - Minimizing the Mallows's distance between the observed and the derived quantile functions of the dependent variable
 - The method relies on the exploitation of the properties of a decomposition of the Mallows's distance
 - Used to measure the sum of squared errors and rewrite the model
 - Splitting the contribution of the predictors in a part depending on the averages of the distributions and another depending on the centered quantile distributions

Distribution and Symmetric Distribution Linear Regression model

Joint work with Sónia Dias (IPVC & INESC TEC)

- Dias and Brito (2015) propose a new Linear Regression model for histogram-valued variables
- Distributions are represented by their quantile functions
- The model includes both the quantile functions that represent the distributions that the independent histogram-valued variables take, and the quantile functions that represent the distributions that the respective symmetric histogram-valued variables take two terms per independent variable

Linear Regression for histogram data Summary and References

Linear combination of quantile functions

The linear combination of quantile functions is not defined as:

$$\Psi_{Y(i)}^{-1}(t) = a_1 \Psi_{X_1(i)}^{-1}(t) + a_2 \Psi_{X_2(i)}^{-1}(t) + \ldots + a_p \Psi_{X_p(i)}^{-1}(t)$$

- Because when we multiply a quantile function by a negative number we do not obtain a non-decreasing function
- If non-negativity constraints are imposed on the parameters a_i , $j \in \{1, 2, \dots, p\}$ a quantile function is always obtained. However, this solution forces a direct linear relation between $\Psi_{V(i)}^{-1}(t)$ and $\Psi_{X_{i}(i)}^{-1}(t)$
- Dias and Brito (2015) proposed a definition for linear combination of quantile functions that solves the problem of the semi-linearity of the space of the quantile functions

Dias, S. and Brito, P. (2015), Linear Regression Model with Histogram-Valued Variables. Statistical Analysis and Data Mining, 8(2),75-113

Definition of linear combination

To allow for a direct and an inverse linear relation between the quantile functions, the linear combination includes:

- $\Psi_{X_j}^{-1}(t)$ that represents the distributions of the histogram-valued variables X_j
- $-\Psi_{X_j}^{-1}(1-t)$ the quantile function that represents the respective symmetric histograms.

Linear combination between quantile functions

The quantile function Ψ_{Y}^{-1} may be expressed as a linear combination of $\Psi_{X_j}^{-1}(t)$ and $-\Psi_{X_i}^{-1}(1-t)$ as follows:

$$\Psi_Y^{-1}(t) = \sum_{j=1}^{
ho} a_j \Psi_{X_j}^{-1}(t) - \sum_{j=1}^{
ho} b_j \Psi_{X_j}^{-1}(1-t) + \gamma$$

イロト 不得下 イヨト イヨト 二日

with $t \in [0, 1]$; $a_j, b_j \ge 0, j \in \{1, 2, \dots, p\}$.

Distribution and Symmetric Distribution Linear Regression model

- Non-negativity restrictions on the parameters do not imply a direct linear relationship
- Uses the Mallows distance to quantify the error
- Determination of the model requires solving a quadratic optimization problem, subject to non-negativity constraints on the unknowns

Distribution and Symmetric Distribution Linear Regression model

The parameters of the model are an optimal solution of the minimization problem:

Minimize $SE = \sum_{i=1}^{n} D_{M}^{2}(\Psi_{Y(i)}^{-1}, \Psi_{\widehat{Y}(i)}^{-1})$

with $a_j, b_j \geq 0, j = \{1, 2, \dots, p\}$ and $\gamma \in \mathbb{R}$

 \longrightarrow Kuhn Tucker optimality conditions allow defining a measure to evaluate the quality of fit of the model (determination coefficient), Ω

イロト 不得 トイヨト イヨト

Distribution and Symmetric Distribution Linear Regression model

- Experiments, both with small real data sets and simulated data: the model works well
- The goodness-of-fit measure shows good behaviour

Alternative version of the model has been developed:

- The constant term is itself a distribution (not a real number)
- Allows for a better interpretation of the obtained model coefficients

Models studied for the special case of interval-valued variables, with extension to triangular distributions within intervals:

Dias, S. and Brito, P. (2017). Off the Beaten Track: A New Linear Model for Interval Data. *European Journal of Operational Research*, 258(3), 1118–1130.

Distributional Data : Crimes in USA regression model

Original data: Socio-economic data from the '90 Census Crime data from 1995

First level units: Cities of the USA states

Original variables:

- Response variable: Y = (Log) total number of violent crimes per 100 000 habitants (LVC)
- Four explicative variables:
 - X1 = percentage of people aged 25 and over with less than 9th grade education
 - $\bullet~X2=$ percentage of people aged 16 and over who are employed
 - X3 = percentage of population who are divorced
 - X4 = percentage of immigrants who immigrated within the last 10 years

Distributional Data : Crimes in USA regression model

Contemporary aggregation per state \rightarrow Higher level units: USA states; 20 states considered

Observations associated to each unit:

The distributions of the records of the cities of the respective state

Response histogram-valued variable LVC :

distributions of the log of the number of violent crimes for each state

Distributional Data : Crimes in USA regression model

Model DSD I:

$$\Psi_{\widehat{LVC}(j)}^{-1}(t) = 3.9321 + 0.0009 \Psi_{X_1(j)}^{-1}(t) - 0.0123 \Psi_{X_2(j)}^{-1}(1-t) + 0.2073 \Psi_{X_3(j)}^{-1}(t) - 0.0353 \Psi_{X_3(j)}^{-1}(1-t) + 0.0187 \Psi_{X_4(j)}^{-1}(t); t \in [0,1]$$

Goodness-of-fit measure : $\Omega=0.87$

X1, X3 and X4 : direct influence in the logarithm of the number of violent crimes X2 (percentage of employed people) : opposite effect

글 🖌 🔺 글 🕨

Distributional Data : Crimes in USA regression model

 $H_{LVC}(AR) = \{ [4.2250, 5.3158), 0.2; [5.3158, 5.8887), 0.2; [5.8887, 6.4802), 0.2; \\ [6.4802, 7.0509), 0.2; [7.0509, 7.7913], 0.2 \}$

イロト 不得 トイヨト イヨト

3

Discriminant Analysis with histogram data

Outline

Variability in Data

- Inear Regression for histogram data
- 4 Discriminant Analysis with histogram data

イロト イポト イヨト イヨト

Linear Discriminant Analysis

Joint work with Sónia Dias (IPVC & INESC TEC) & Paula Amaral (NOVA Univ. of

Lisbon)

Let S be partitioned in k groups, $G_h, h = 1, \ldots, k$.

A linear discriminant function is a linear combination of the explicative variables :

$$egin{aligned} \Psi_{D(i)}^{-1}(t) &= \sum\limits_{j=1}^{p} a_j (\Psi_{X_j(i)}^{-1}(t) - \overline{\Psi_{X_j}^{-1}}(t)) + \ &+ \sum\limits_{j=1}^{p} b_j (-\Psi_{X_j(i)}^{-1}(1-t) + \overline{\Psi_{X_j}^{-1}}(1-t)) & ext{ with } a_j, \ b_j \geq 0 \end{aligned}$$

Alternatively:
$$\Psi_{D(i)}^{-1}(t) = \Psi_{S(i)}^{-1}(t) - \Psi_{S}^{-1}(t)$$
 where
 $\Psi_{S(i)}^{-1}(t) = \sum_{j=1}^{p} a_{j} \Psi_{X_{j}(i)}^{-1}(t) - b_{j} \Psi_{X_{j}(i)}^{-1}(1-t)$
 $\overline{\Psi_{S}^{-1}}(t) = \sum_{j=1}^{p} a_{j} \overline{\Psi_{X_{j}}^{-1}}(t) - b_{j} \overline{\Psi_{X_{j}}^{-1}}(1-t)$, $a_{j}, b_{j} \ge 0$
(CDA Views 2018) Protection

Discriminant Analysis with histogram data

Discriminant Function

Classical Model

Discriminant Function

$$S(i) = \sum_{j=1}^{p} \gamma_j x_j(i)$$

The weight vector γ is obtained such that:

the ratio of the variability between groups relatively to the variability within groups is maximized

$$\lambda = \frac{\gamma' \mathbf{B} \gamma}{\gamma' \mathbf{W} \gamma}$$

where

B - matrix of the sum of the squares between-groups

W - matrix of the sum of the squares within-groups

Symbolic Model

Discriminant Function

$$\Psi_{\mathcal{S}(i)}^{-1}(t) = \sum_{j=1}^{p} a_{j} \Psi_{X_{j}(i)}^{-1}(t) - \sum_{j=1}^{p} b_{j} \Psi_{X_{j}(i)}^{-1}(1-t)$$

with $a_i, b_i \geq 0$.

The weight vector $\gamma > 0$ is obtained such that:

the ratio of the variability between groups relatively to the variability within groups is maximized

$$\lambda = \frac{\gamma' \mathbf{B} \gamma}{\gamma' \mathbf{W} \gamma}$$

3

The evaluation of the variability between scores is based on the Mallows distance イロト イポト イヨト イヨト

Linear Regression for histogram data Discriminant Analysis with histogram data Summary and References

Discriminant Function

Classical Model

Decomposition of the matrix of the Sums of Squares and Cross-Products (SSCP):

T = B + W

B - matrix of the sum of squares and cross-products between-groups W - matrix of the sum of squares and cross-products within-groups

Consequently:

$$\gamma' \mathbf{T} \gamma = \gamma' (\mathbf{B} + \mathbf{W}) \gamma = \gamma' \mathbf{B} \gamma + \gamma' \mathbf{W} \gamma$$
$$\gamma' \mathbf{T} \gamma = \sum_{i=1}^{n} d^{2} (S(i), \overline{S})$$
with $S(i) = \sum_{j=1}^{p} \gamma_{j} x_{j}(i)$ and $\overline{S} = \frac{1}{n} \sum_{i=1}^{n} S(i)$

Symbolic Model

Sum of the squares of the Mallows distance between $\Psi_{S(i)}^{-1}(t)$ and $\Psi_{S}^{-1}(t)$, $\sum_{M}^{\infty} D_{M}^{2}(\Psi_{S(i)}^{-1}(t), \overline{\Psi_{S}^{-1}}(t)) = \gamma' \mathbf{T} \gamma$

According to the Huygens theorem :

$$\begin{split} &\sum_{i=1}^{n} D_{M}^{2}(\Psi_{S(i)}^{-1}(t), \overline{\Psi_{S}^{-1}}(t)) = \\ &\sum_{h=1}^{k} |G_{h}| D_{M}^{2}(\overline{\Psi_{S}^{-1}}(t), \overline{\Psi_{Sh}^{-1}}(t)) + \\ &+ \sum_{h=1}^{k} \sum_{i \in G_{h}} D_{M}^{2}(\Psi_{S(i)}^{-1}(t), \overline{\Psi_{Sh}^{-1}}(t)) \end{split}$$

with
$$\overline{\Psi_{S_h}^{-1}}(t) = \sum_{j=1}^{p} \left[a_j \overline{\Psi_{X_{jh}}^{-1}}(t) - b_j \overline{\Psi_{X_{jh}}^{-1}}(1-t) \right]$$

In matricial notation:

$$\gamma' \mathbf{T} \gamma = \gamma' \mathbf{B} \gamma + \gamma' \mathbf{W} \gamma$$

T. **B**. **W** are $m \times m$ matrices. m = 2p. na n

Discriminant Function

Classical Model

Optimization problem:

Maximize the ratio

$$\lambda = \frac{\gamma' \mathbf{B} \gamma}{\gamma' \mathbf{W} \gamma}$$

Goal: Estimate vector γ such that the variability of the scores is maximal between groups and minimal within groups.

Complexity of the optimization problem:

- Easy to find the optimal solution

Symbolic Model

Optimization problem:

Maximize the ratio

$$\lambda = \frac{\gamma' \mathbf{B} \gamma}{\gamma' \mathbf{W} \gamma}$$

subject to $\gamma \geq \mathbf{0}$

Optimization of rational quadratic functions

- Hard optimization problem
- Nonconvex
- Easy to find a good solution
- Difficult to prove optimality
- Global optimal certificate of solution provided by BARON was only possible using a copositive relaxation

OGDA, Vienna 2018 P.

P. Brito

Conic Optimization

Optimization problem of the discriminant method:

$$\varphi = \max\left\{f(x) = \frac{x'\mathbf{B}x}{x'\mathbf{W}x} : x \in \mathbb{R}^m_+\right\} = \max\left\{\mathbf{B} \cdot X : \mathbf{W} \cdot X = 1, X \in \mathcal{C}^*_m\right\}$$

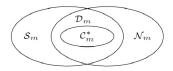
where C_m^* is a cone of completely positive matrices, i.e. X = YY' with Y an $m \times k$ matrix with $Y \ge 0$.

P. Amaral, I. Bomze, J. Júdice (2014). Copositivity and constrained fractional quadratic problems. *Mathematical Programming* 146, 325-350.

イロト イポト イラト イラト

Discriminant Analysis with histogram data

Conic Optimization



- In general working with \mathcal{C}_m^* is difficult
- Usually, what is done is to work in a relaxation of this problem, replacing \mathcal{C}_m^* , by the cone of doubly nonnegative matrices \mathcal{D}_m

$$\varphi = \max \{ \mathbf{B} \cdot X : \mathbf{W} \cdot X = 1, X \in \mathcal{C}_m^* \}$$
$$\theta = \max \{ \mathbf{B} \cdot X : \mathbf{W} \cdot X = 1, X \in \mathcal{D}_m \}$$

In general $\varphi < \theta$. However, if m < 4 then $\varphi = \theta$.

▶ < ∃ ▶</p>

Classification in two groups

Classification in two groups using the Mallows Distance

Considering two groups: C_1 , C_2 , an observation i and the respective quantile functions: $\overline{\Psi_{D_{c_1}}^{-1}}(t)$, $\overline{\Psi_{D_{c_2}}^{-1}}(t)$ and $\Psi_{D(i)}^{-1}(t)$

• The observation i is assigned to Group C1 if

$$D^2_M\left(\Psi^{-1}_{D(i)}(t), \overline{\Psi^{-1}_{D_{G_1}}}(t)
ight) < D^2_M\left(\Psi^{-1}_{D(i)}(t), \overline{\Psi^{-1}_{D_{G_2}}}(t)
ight)$$

• The observation *i* is assigned to Group C2 if

$$D^2_M\left(\Psi^{-1}_{D(i)}(t), \overline{\Psi^{-1}_{D_{G_2}}}(t)
ight) < D^2_M\left(\Psi^{-1}_{D(i)}(t), \overline{\Psi^{-1}_{D_{G_1}}}(t)
ight)$$

イロト 不得 トイヨト イヨト

3

An observation i is assigned to the group for which the Mallows distance between its score and the score of the corresponding barycentric histogram is minimum.

USA 96 elections: Democrat/Republican state

Histogram-valued variables:

Pov: percentage of people under the poverty level; *Div:* percentage of population who are divorced

- Only the states for which the number of records for all selected variables is higher than thirty, i.e. twenty states are considered.
- For all observations the subintervals of each histogram have the same weight (equiprobable) with frequency 0.20.

Groups:

Group 1 - Democrat: 12 States Group 2 - Republican: 8 States

USA 96 elections: Democrat/Republican state

Discriminant function:

$$\Psi_{D(i)}^{-1}(t) = 13.76\Psi_{Pov(i)}^{-1}(1-t) + 7.91\Psi_{Div(i)}^{-1}(t) + \overline{\Psi_{S}^{-1}}(t)$$

Parameters: Conic optimization - Optimal solution

Classification results: 80% well classified.

イロト 不得 トイヨト イヨト

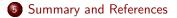
3

Summary and References

Outline

Variability in Data

- Inear Regression for histogram data
- Discriminant Analysis with histogram data



イロト イポト イヨト イヨト

Concluding remarks

- From micro-data to macro-data: Interval and Distribution-valued data
- Take variability into account
- Several methodologies already developed for multivariate data analysis
- Histogram data : methods based on the Mallows distance between quantile functions
- New problems / challenges : distributions are not real numbers !

Concluding remarks

"Distributions are the numbers of the future"

(Berthold Schweizer, 1984)

< □ > < 向

化压力

Books and Main Papers

Books:

- Bock, H.-H., Diday, E. (2000): Analysis of Symbolic Data: Exploratory methods for extracting statistical information from complex data. Springer.
- Billard, L., Diday, E. (2007): Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley.
 - Diday, E., Noirhomme-Fraiture, M. (2008): *Symbolic Data Analysis and the SODAS Software.* Wiley.

Survey Papers:

- Billard, L., Diday, E. (2003). From the statistics of data to the statistics of knowledge: Symbolic Data Analysis. *JASA*, 98 (462), 470–487.

Noirhomme-Fraiture, M., Brito, P. (2011). Far beyond the classical data models: Symbolic data analysis. *Statistical Analysis and Data Mining*, 4(2), 157–170.

イロト イポト イヨト イヨト

996

1

メロト メタト メヨト メヨト